Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CLN: Separate transform tests #36146

Merged
merged 2 commits into from
Sep 6, 2020
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 1 addition & 48 deletions pandas/tests/frame/apply/test_frame_apply.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
from collections import OrderedDict
from datetime import datetime
from itertools import chain
import operator
import warnings

import numpy as np
Expand All @@ -14,6 +13,7 @@
import pandas._testing as tm
from pandas.core.apply import frame_apply
from pandas.core.base import SpecificationError
from pandas.tests.frame.common import zip_frames


@pytest.fixture
Expand Down Expand Up @@ -1058,25 +1058,6 @@ def test_consistency_for_boxed(self, box, int_frame_const_col):
tm.assert_frame_equal(result, expected)


def zip_frames(frames, axis=1):
"""
take a list of frames, zip them together under the
assumption that these all have the first frames' index/columns.

Returns
-------
new_frame : DataFrame
"""
if axis == 1:
columns = frames[0].columns
zipped = [f.loc[:, c] for c in columns for f in frames]
return pd.concat(zipped, axis=1)
else:
index = frames[0].index
zipped = [f.loc[i, :] for i in index for f in frames]
return pd.DataFrame(zipped)


class TestDataFrameAggregate:
def test_agg_transform(self, axis, float_frame):
other_axis = 1 if axis in {0, "index"} else 0
Expand All @@ -1087,16 +1068,10 @@ def test_agg_transform(self, axis, float_frame):
f_sqrt = np.sqrt(float_frame)

# ufunc
result = float_frame.transform(np.sqrt, axis=axis)
expected = f_sqrt.copy()
tm.assert_frame_equal(result, expected)

result = float_frame.apply(np.sqrt, axis=axis)
tm.assert_frame_equal(result, expected)

result = float_frame.transform(np.sqrt, axis=axis)
tm.assert_frame_equal(result, expected)

# list-like
result = float_frame.apply([np.sqrt], axis=axis)
expected = f_sqrt.copy()
Expand All @@ -1110,9 +1085,6 @@ def test_agg_transform(self, axis, float_frame):
)
tm.assert_frame_equal(result, expected)

result = float_frame.transform([np.sqrt], axis=axis)
tm.assert_frame_equal(result, expected)

# multiple items in list
# these are in the order as if we are applying both
# functions per series and then concatting
Expand All @@ -1128,38 +1100,19 @@ def test_agg_transform(self, axis, float_frame):
)
tm.assert_frame_equal(result, expected)

result = float_frame.transform([np.abs, "sqrt"], axis=axis)
tm.assert_frame_equal(result, expected)

def test_transform_and_agg_err(self, axis, float_frame):
# cannot both transform and agg
msg = "transforms cannot produce aggregated results"
with pytest.raises(ValueError, match=msg):
float_frame.transform(["max", "min"], axis=axis)

msg = "cannot combine transform and aggregation operations"
with pytest.raises(ValueError, match=msg):
with np.errstate(all="ignore"):
float_frame.agg(["max", "sqrt"], axis=axis)

with pytest.raises(ValueError, match=msg):
with np.errstate(all="ignore"):
float_frame.transform(["max", "sqrt"], axis=axis)

df = pd.DataFrame({"A": range(5), "B": 5})

def f():
with np.errstate(all="ignore"):
df.agg({"A": ["abs", "sum"], "B": ["mean", "max"]}, axis=axis)

@pytest.mark.parametrize("method", ["abs", "shift", "pct_change", "cumsum", "rank"])
def test_transform_method_name(self, method):
# GH 19760
df = pd.DataFrame({"A": [-1, 2]})
result = df.transform(method)
expected = operator.methodcaller(method)(df)
tm.assert_frame_equal(result, expected)

def test_demo(self):
# demonstration tests
df = pd.DataFrame({"A": range(5), "B": 5})
Expand Down
72 changes: 72 additions & 0 deletions pandas/tests/frame/apply/test_frame_transform.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
import operator

import numpy as np
import pytest

import pandas as pd
import pandas._testing as tm
from pandas.tests.frame.common import zip_frames


def test_agg_transform(axis, float_frame):
other_axis = 1 if axis in {0, "index"} else 0

with np.errstate(all="ignore"):

f_abs = np.abs(float_frame)
f_sqrt = np.sqrt(float_frame)

# ufunc
result = float_frame.transform(np.sqrt, axis=axis)
expected = f_sqrt.copy()
tm.assert_frame_equal(result, expected)

result = float_frame.transform(np.sqrt, axis=axis)
tm.assert_frame_equal(result, expected)

# list-like
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

same comments in other PR, ideally these cases are separate tests (or parameterized but that might be harder), (but can certainly be a followon PR)

expected = f_sqrt.copy()
if axis in {0, "index"}:
expected.columns = pd.MultiIndex.from_product(
[float_frame.columns, ["sqrt"]]
)
else:
expected.index = pd.MultiIndex.from_product([float_frame.index, ["sqrt"]])
result = float_frame.transform([np.sqrt], axis=axis)
tm.assert_frame_equal(result, expected)

# multiple items in list
# these are in the order as if we are applying both
# functions per series and then concatting
expected = zip_frames([f_abs, f_sqrt], axis=other_axis)
if axis in {0, "index"}:
expected.columns = pd.MultiIndex.from_product(
[float_frame.columns, ["absolute", "sqrt"]]
)
else:
expected.index = pd.MultiIndex.from_product(
[float_frame.index, ["absolute", "sqrt"]]
)
result = float_frame.transform([np.abs, "sqrt"], axis=axis)
tm.assert_frame_equal(result, expected)


def test_transform_and_agg_err(axis, float_frame):
# cannot both transform and agg
msg = "transforms cannot produce aggregated results"
with pytest.raises(ValueError, match=msg):
float_frame.transform(["max", "min"], axis=axis)

msg = "cannot combine transform and aggregation operations"
with pytest.raises(ValueError, match=msg):
with np.errstate(all="ignore"):
float_frame.transform(["max", "sqrt"], axis=axis)


@pytest.mark.parametrize("method", ["abs", "shift", "pct_change", "cumsum", "rank"])
def test_transform_method_name(method):
# GH 19760
df = pd.DataFrame({"A": [-1, 2]})
result = df.transform(method)
expected = operator.methodcaller(method)(df)
tm.assert_frame_equal(result, expected)
26 changes: 26 additions & 0 deletions pandas/tests/frame/common.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
from typing import List

from pandas._typing import Axis

from pandas import DataFrame, concat


def _check_mixed_float(df, dtype=None):
# float16 are most likely to be upcasted to float32
dtypes = dict(A="float32", B="float32", C="float16", D="float64")
Expand Down Expand Up @@ -29,3 +36,22 @@ def _check_mixed_int(df, dtype=None):
assert df.dtypes["C"] == dtypes["C"]
if dtypes.get("D"):
assert df.dtypes["D"] == dtypes["D"]


def zip_frames(frames: List[DataFrame], axis: int = 1) -> DataFrame:
"""
take a list of frames, zip them together under the
assumption that these all have the first frames' index/columns.

Returns
-------
new_frame : DataFrame
"""
if axis == 1:
columns = frames[0].columns
zipped = [f.loc[:, c] for c in columns for f in frames]
return concat(zipped, axis=1)
else:
index = frames[0].index
zipped = [f.loc[i, :] for i in index for f in frames]
return DataFrame(zipped)
31 changes: 1 addition & 30 deletions pandas/tests/series/apply/test_series_apply.py
Original file line number Diff line number Diff line change
Expand Up @@ -209,25 +209,16 @@ def test_transform(self, string_series):
f_abs = np.abs(string_series)

# ufunc
result = string_series.transform(np.sqrt)
expected = f_sqrt.copy()
tm.assert_series_equal(result, expected)

result = string_series.apply(np.sqrt)
tm.assert_series_equal(result, expected)

# list-like
result = string_series.transform([np.sqrt])
result = string_series.apply([np.sqrt])
expected = f_sqrt.to_frame().copy()
expected.columns = ["sqrt"]
tm.assert_frame_equal(result, expected)

result = string_series.transform([np.sqrt])
tm.assert_frame_equal(result, expected)

result = string_series.transform(["sqrt"])
tm.assert_frame_equal(result, expected)

# multiple items in list
# these are in the order as if we are applying both functions per
# series and then concatting
Expand All @@ -236,10 +227,6 @@ def test_transform(self, string_series):
result = string_series.apply([np.sqrt, np.abs])
tm.assert_frame_equal(result, expected)

result = string_series.transform(["sqrt", "abs"])
expected.columns = ["sqrt", "abs"]
tm.assert_frame_equal(result, expected)

# dict, provide renaming
expected = pd.concat([f_sqrt, f_abs], axis=1)
expected.columns = ["foo", "bar"]
Expand All @@ -250,19 +237,11 @@ def test_transform(self, string_series):

def test_transform_and_agg_error(self, string_series):
# we are trying to transform with an aggregator
msg = "transforms cannot produce aggregated results"
with pytest.raises(ValueError, match=msg):
string_series.transform(["min", "max"])

msg = "cannot combine transform and aggregation"
with pytest.raises(ValueError, match=msg):
with np.errstate(all="ignore"):
string_series.agg(["sqrt", "max"])

with pytest.raises(ValueError, match=msg):
with np.errstate(all="ignore"):
string_series.transform(["sqrt", "max"])

msg = "cannot perform both aggregation and transformation"
with pytest.raises(ValueError, match=msg):
with np.errstate(all="ignore"):
Expand Down Expand Up @@ -463,14 +442,6 @@ def test_agg_cython_table_raises(self, series, func, expected):
# e.g. Series('a b'.split()).cumprod() will raise
series.agg(func)

def test_transform_none_to_type(self):
# GH34377
df = pd.DataFrame({"a": [None]})

msg = "DataFrame constructor called with incompatible data and dtype"
with pytest.raises(TypeError, match=msg):
df.transform({"a": int})


class TestSeriesMap:
def test_map(self, datetime_series):
Expand Down
59 changes: 59 additions & 0 deletions pandas/tests/series/apply/test_series_transform.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import numpy as np
import pytest

import pandas as pd
import pandas._testing as tm


def test_transform(string_series):
# transforming functions

with np.errstate(all="ignore"):
f_sqrt = np.sqrt(string_series)
f_abs = np.abs(string_series)

# ufunc
result = string_series.transform(np.sqrt)
expected = f_sqrt.copy()
tm.assert_series_equal(result, expected)

# list-like
result = string_series.transform([np.sqrt])
expected = f_sqrt.to_frame().copy()
expected.columns = ["sqrt"]
tm.assert_frame_equal(result, expected)

result = string_series.transform([np.sqrt])
tm.assert_frame_equal(result, expected)

result = string_series.transform(["sqrt"])
tm.assert_frame_equal(result, expected)

# multiple items in list
# these are in the order as if we are applying both functions per
# series and then concatting
expected = pd.concat([f_sqrt, f_abs], axis=1)
result = string_series.transform(["sqrt", "abs"])
expected.columns = ["sqrt", "abs"]
tm.assert_frame_equal(result, expected)


def test_transform_and_agg_error(string_series):
# we are trying to transform with an aggregator
msg = "transforms cannot produce aggregated results"
with pytest.raises(ValueError, match=msg):
string_series.transform(["min", "max"])

msg = "cannot combine transform and aggregation operations"
with pytest.raises(ValueError, match=msg):
with np.errstate(all="ignore"):
string_series.transform(["sqrt", "max"])


def test_transform_none_to_type():
# GH34377
df = pd.DataFrame({"a": [None]})

msg = "DataFrame constructor called with incompatible data and dtype"
with pytest.raises(TypeError, match=msg):
df.transform({"a": int})