Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Backport PR #53382 on branch 2.0.x (BUG: convert_dtypes(dtype_backend="pyarrow") losing tz for tz-aware dtypes) #53388

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.0.2.rst
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ Bug fixes
- Bug in :func:`read_csv` raising ``OverflowError`` for ``engine="pyarrow"`` and ``parse_dates`` set (:issue:`53295`)
- Bug in :func:`to_datetime` was inferring format to contain ``"%H"`` instead of ``"%I"`` if date contained "AM" / "PM" tokens (:issue:`53147`)
- Bug in :meth:`DataFrame.convert_dtypes` ignores ``convert_*`` keywords when set to False ``dtype_backend="pyarrow"`` (:issue:`52872`)
- Bug in :meth:`DataFrame.convert_dtypes` losing timezone for tz-aware dtypes and ``dtype_backend="pyarrow"`` (:issue:`53382`)
- Bug in :meth:`DataFrame.sort_values` raising for PyArrow ``dictionary`` dtype (:issue:`53232`)
- Bug in :meth:`Series.describe` treating pyarrow-backed timestamps and timedeltas as categorical data (:issue:`53001`)
- Bug in :meth:`Series.rename` not making a lazy copy when Copy-on-Write is enabled when a scalar is passed to it (:issue:`52450`)
Expand Down
3 changes: 3 additions & 0 deletions pandas/core/arrays/arrow/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@
is_object_dtype,
is_scalar,
)
from pandas.core.dtypes.dtypes import DatetimeTZDtype
from pandas.core.dtypes.missing import isna

from pandas.core import roperator
Expand Down Expand Up @@ -168,6 +169,8 @@ def to_pyarrow_type(
return dtype.pyarrow_dtype
elif isinstance(dtype, pa.DataType):
return dtype
elif isinstance(dtype, DatetimeTZDtype):
return pa.timestamp(dtype.unit, dtype.tz)
elif dtype:
try:
# Accepts python types too
Expand Down
4 changes: 3 additions & 1 deletion pandas/core/dtypes/cast.py
Original file line number Diff line number Diff line change
Expand Up @@ -1134,7 +1134,9 @@ def convert_dtypes(
and not isinstance(inferred_dtype, StringDtype)
)
):
if isinstance(inferred_dtype, PandasExtensionDtype):
if isinstance(inferred_dtype, PandasExtensionDtype) and not isinstance(
inferred_dtype, DatetimeTZDtype
):
base_dtype = inferred_dtype.base
elif isinstance(inferred_dtype, (BaseMaskedDtype, ArrowDtype)):
base_dtype = inferred_dtype.numpy_dtype
Expand Down
13 changes: 12 additions & 1 deletion pandas/tests/frame/methods/test_convert_dtypes.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,8 @@ def test_pyarrow_dtype_backend(self):
"c": pd.Series([True, False, None], dtype=np.dtype("O")),
"d": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")),
"e": pd.Series(pd.date_range("2022", periods=3)),
"f": pd.Series(pd.timedelta_range("1D", periods=3)),
"f": pd.Series(pd.date_range("2022", periods=3, tz="UTC").as_unit("s")),
"g": pd.Series(pd.timedelta_range("1D", periods=3)),
}
)
result = df.convert_dtypes(dtype_backend="pyarrow")
Expand All @@ -76,6 +77,16 @@ def test_pyarrow_dtype_backend(self):
)
),
"f": pd.arrays.ArrowExtensionArray(
pa.array(
[
datetime.datetime(2022, 1, 1),
datetime.datetime(2022, 1, 2),
datetime.datetime(2022, 1, 3),
],
type=pa.timestamp(unit="s", tz="UTC"),
)
),
"g": pd.arrays.ArrowExtensionArray(
pa.array(
[
datetime.timedelta(1),
Expand Down