GopenPGP is a high-level OpenPGP library built on top of a fork of the golang crypto library.
Table of Contents
To use this library using Go Modules just edit your
go.mod
configuration to contain:
require (
...
github.com/ProtonMail/gopenpgp/v2 v2.0.1
)
It can then be installed by running:
go mod vendor
Finally your software can include it in your software as follows:
package main
import (
"fmt"
"github.com/ProtonMail/gopenpgp/v2/crypto"
)
func main() {
fmt.Println(crypto.GetUnixTime())
}
To install for development mode, cloning the repository, it can be done in the following way:
cd $GOPATH
mkdir -p src/github.com/ProtonMail/
cd $GOPATH/src/github.com/ProtonMail/
git clone git@github.com:ProtonMail/gopenpgp.git
cd gopenpgp
ln -s . v2
go mod
A full overview of the API can be found here: https://godoc.org/gopkg.in/ProtonMail/gopenpgp.v2/crypto
In this document examples are provided and the proper use of (almost) all functions is tested.
This library can be compiled with Gomobile too. First ensure you have a working installation of gomobile:
gomobile version
In case this fails, install it with:
go get -u golang.org/x/mobile/cmd/gomobile
Then ensure your path env var has gomobile's binary, and it is properly init-ed:
export PATH="$PATH:$GOPATH/bin"
gomobile init
Then you must ensure that the Android or iOS frameworks are installed and the respective env vars set.
Finally, build the application
sh build.sh
This script will build for both android and iOS at the same time, to filter one out you can comment out the line in the corresponding section.
import "github.com/ProtonMail/gopenpgp/v2/helper"
const password = []byte("hunter2")
// Encrypt data with password
armor, err := helper.EncryptMessageWithPassword(password, "my message")
// Decrypt data with password
message, err := helper.DecryptMessageWithPassword(password, armor)
To encrypt binary data or use more advanced modes:
import "github.com/ProtonMail/gopenpgp/v2/constants"
const password = []byte("hunter2")
var message = crypto.NewPlainMessage(data)
// Or
message = crypto.NewPlainMessageFromString(string)
// Encrypt data with password
encrypted, err := EncryptMessageWithPassword(message, password)
// Encrypted message in encrypted.GetBinary() or encrypted.GetArmored()
// Decrypt data with password
decrypted, err := DecryptMessageWithPassword(encrypted, password)
//Original message in decrypted.GetBinary()
import "github.com/ProtonMail/gopenpgp/v2/helper"
// put keys in backtick (``) to avoid errors caused by spaces or tabs
const pubkey = `-----BEGIN PGP PUBLIC KEY BLOCK-----
...
-----END PGP PUBLIC KEY BLOCK-----`
const privkey = `-----BEGIN PGP PRIVATE KEY BLOCK-----
...
-----END PGP PRIVATE KEY BLOCK-----` // encrypted private key
const passphrase = []byte(`the passphrase of the private key`) // Passphrase of the privKey
// encrypt plain text message using public key
armor, err := helper.EncryptMessageArmored(pubkey, "plain text")
// decrypt armored encrypted message using the private key and obtain plain text
decrypted, err := helper.DecryptMessageArmored(privkey, passphrase, armor)
// encrypt binary message using public key
armor, err := helper.EncryptBinaryMessageArmored(pubkey, []byte("plain text"))
// decrypt armored encrypted message using the private key expecting binary data
decrypted, err := helper.DecryptBinaryMessageArmored(privkey, passphrase, armor)
With signatures:
// Keys initialization as before (omitted)
// encrypt message using public key, sign with the private key
armor, err := helper.EncryptSignMessageArmored(pubkey, privkey, passphrase, "plain text")
// decrypt armored encrypted message using the private key, verify with the public key
// err != nil if verification fails
decrypted, err := helper.DecryptVerifyMessageArmored(pubkey, privkey, passphrase, armor)
For more advanced modes the full API (i.e. without helpers) can be used:
// Keys initialization as before (omitted)
var binMessage = crypto.NewPlainMessage(data)
publicKeyObj, err := crypto.NewKeyFromArmored(publicKey)
publicKeyRing, err := crypto.NewKeyRing(publicKeyObj)
pgpMessage, err := publicKeyRing.Encrypt(binMessage, privateKeyRing)
// Armored message in pgpMessage.GetArmored()
// pgpMessage can be obtained from NewPGPMessageFromArmored(ciphertext)
//pgpMessage can be obtained from a byte array
var pgpMessage = crypto.NewPGPMessage([]byte)
privateKeyObj, err := crypto.NewKeyFromArmored(privateKey)
unlockedKeyObj = privateKeyObj.Unlock(passphrase)
privateKeyRing, err := crypto.NewKeyRing(unlockedKeyObj)
message, err := privateKeyRing.Decrypt(pgpMessage, publicKeyRing, crypto.GetUnixTime())
privateKeyRing.ClearPrivateParams()
// Original data in message.GetString()
// `err` can be a SignatureVerificationError
Keys are generated with the GenerateKey
function, that returns the armored key as a string and a potential error.
The library supports RSA with different key lengths or Curve25519 keys.
const (
name = "Max Mustermann"
email = "max.mustermann@example.com"
passphrase = []byte("LongSecret")
rsaBits = 2048
)
// RSA, string
rsaKey, err := helper.GenerateKey(name, email, passphrase, "rsa", rsaBits)
// Curve25519, string
ecKey, err := helper.GenerateKey(name, email, passphrase, "x25519", 0)
// RSA, Key struct
rsaKey, err := crypto.GenerateKey(name, email, "rsa", rsaBits)
// Curve25519, Key struct
ecKey, err := crypto.GenerateKey(name, email, "x25519", 0)
To sign plain text data either an unlocked private keyring or a passphrase must be provided. The output is an armored signature.
const privkey = `-----BEGIN PGP PRIVATE KEY BLOCK-----
...
-----END PGP PRIVATE KEY BLOCK-----` // Encrypted private key
const passphrase = []byte("LongSecret") // Private key passphrase
var message = crypto.NewPlaintextMessage("Verified message")
privateKeyObj, err := crypto.NewKeyFromArmored(privkey)
unlockedKeyObj = privateKeyObj.Unlock(passphrase)
signingKeyRing, err := crypto.NewKeyRing(unlockedKeyObj)
pgpSignature, err := signingKeyRing.SignDetached(message, trimNewlines)
// The armored signature is in pgpSignature.GetArmored()
// The signed text is in message.GetString()
To verify a signature either private or public keyring can be provided.
const pubkey = `-----BEGIN PGP PUBLIC KEY BLOCK-----
...
-----END PGP PUBLIC KEY BLOCK-----`
const signature = `-----BEGIN PGP SIGNATURE-----
...
-----END PGP SIGNATURE-----`
message := crypto.NewPlaintextMessage("Verified message")
pgpSignature, err := crypto.NewPGPSignatureFromArmored(signature)
publicKeyObj, err := crypto.NewKeyFromArmored(pubkey)
signingKeyRing, err := crypto.NewKeyRing(publicKeyObj)
err := signingKeyRing.VerifyDetached(message, pgpSignature, crypto.GetUnixTime())
if err == nil {
// verification success
}
const privkey = `-----BEGIN PGP PRIVATE KEY BLOCK-----
...
-----END PGP PRIVATE KEY BLOCK-----` // encrypted private key
const passphrase = "LongSecret"
var message = crypto.NewPlainMessage(data)
privateKeyObj, err := crypto.NewKeyFromArmored(privkey)
unlockedKeyObj := privateKeyObj.Unlock(passphrase)
signingKeyRing, err := crypto.NewKeyRing(unlockedKeyObj)
pgpSignature, err := signingKeyRing.SignDetached(message)
// The armored signature is in pgpSignature.GetArmored()
// The signed text is in message.GetBinary()
To verify a signature either private or public keyring can be provided.
const pubkey = `-----BEGIN PGP PUBLIC KEY BLOCK-----
...
-----END PGP PUBLIC KEY BLOCK-----`
const signature = `-----BEGIN PGP SIGNATURE-----
...
-----END PGP SIGNATURE-----`
message := crypto.NewPlainMessage("Verified message")
pgpSignature, err := crypto.NewPGPSignatureFromArmored(signature)
publicKeyObj, err := crypto.NewKeyFromArmored(pubkey)
signingKeyRing, err := crypto.NewKeyRing(publicKeyObj)
err := signingKeyRing.VerifyDetached(message, pgpSignature, crypto.GetUnixTime())
if err == nil {
// verification success
}
// Keys initialization as before (omitted)
armored, err := helper.SignCleartextMessageArmored(privateKey, passphrase, plaintext)
To verify the message it has to be provided unseparated to the library. If verification fails an error will be returned.
// Keys initialization as before (omitted)
verifiedPlainText, err := helper.VerifyCleartextMessageArmored(publicKey, armored, crypto.GetUnixTime())
A session key can be generated, encrypted to a Asymmetric/Symmetric key packet and obtained from it
// Keys initialization as before (omitted)
sessionKey, err := crypto.GenerateSessionKey()
keyPacket, err := publicKeyRing.EncryptSessionKey(sessionKey) // Will encrypt to all the keys in the keyring
keyPacketSymm, err := crypto.EncryptSessionKeyWithPassword(sessionKey, password)
KeyPacket
is a []byte
containing the session key encrypted with the public key or password.
decodedKeyPacket, err := privateKeyRing.DecryptSessionKey(keyPacket) // Will decode with the first valid key found
decodedSymmKeyPacket, err := crypto.DecryptSessionKeyWithPassword(keyPacketSymm, password)
decodedKeyPacket
and decodedSymmKeyPacket
are objects of type *SymmetricKey
that can
be used to decrypt the corresponding symmetrically encrypted data packets:
var message = crypto.NewPlainMessage(data)
// Encrypt data with session key
dataPacket, err := sessionKey.Encrypt(message)
// Decrypt data with session key
decrypted, err := sessionKey.Decrypt(password, dataPacket)
//Original message in decrypted.GetBinary()
Note that it is not possible to process signatures when using data packets directly. Joining the data packet and a key packet gives us a valid PGP message:
pgpSplitMessage := NewPGPSplitMessage(keyPacket, dataPacket)
pgpMessage := pgpSplitMessage.GetPGPMessage()
// And vice-versa
newPGPSplitMessage, err := pgpMessage.SeparateKeyAndData()
// Key Packet is in newPGPSplitMessage.GetBinaryKeyPacket()
// Data Packet is in newPGPSplitMessage.GetBinaryDataPacket()
Keys are now checked on import and the explicit check via Key#Check()
is deprecated and no longer necessary.