Skip to content

To build a model to accurately classify a piece of news as REAL or FAKE. Using sklearn, build a TfidfVectorizer on the provided dataset. Then, initialize a PassiveAggressive Classifier and fit the model. In the end, the accuracy score and the confusion matrix tell us how well our model fares.

Notifications You must be signed in to change notification settings

patilvaibhav12/news-classification-module

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

news-classification-module

To build a model to accurately classify a piece of news as REAL or FAKE. Using sklearn, build a TfidfVectorizer on the provided dataset. Then, initialize a PassiveAggressive Classifier and fit the model. In the end, the accuracy score and the confusion matrix tell us how well our model fares.

About

To build a model to accurately classify a piece of news as REAL or FAKE. Using sklearn, build a TfidfVectorizer on the provided dataset. Then, initialize a PassiveAggressive Classifier and fit the model. In the end, the accuracy score and the confusion matrix tell us how well our model fares.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages