Join me for "TextCraft: Enhancing Documentation with LaTeX and Markdown in SageMaker," where we'll explore the powerful capabilities of LaTeX and Markdown to improve your documentation practices. This talk will provide insights into leveraging these tools within SageMaker to create clearer, more effective, and professionally styled documents. Whether you're documenting research, drafting reports, or preparing presentations, you’ll learn how to seamlessly integrate text and code in your workflows, enhancing readability and functionality. Ideal for data scientists, researchers, and anyone interested in advanced documentation techniques.
Greek Letters
Arrows
Miscellaneous Symbols
Binary Operation/Relation Symbols
Math Constructs
Matrix
Aligning Equations
Greek Letters
Jupyter Notebook Upper Case
Jupyter Notebook Lower Case
Α,$\alpha$
\Alpha
\alpha
Β,$\beta$
\Beta
\beta
Γ,$\gamma$
\Gamma
\gamma
Δ,$\delta$
\Delta
\delta
Ε,$\epsilon$
\Epsilon
\epsilon
Ζ,$\zeta$
\Zeta
\zeta
Η,$\eta$
\Eta
\eta
Θ,$\theta$
\Theta
\theta
Ι,$\iota$
\Iota
\iota
Κ,$\kappa$
\Kappa
\kappa
Λ,$\lambda$
\Lambda
\lambda
Μ,$\mu$
\Mu
\mu
Ν,$\nu$
\NU
\nu
Ξ,$\xi$
\Xi
\xi
Ο,$\omicron$
\Omicron
\omicron
Π,$\pi$
\Pi
\pi
Ρ,$\rho$
\Rho
\rho
Σ,$\sigma$
\Sigma
\sigma
Τ,$\tau$
\Tau
\tau
Υ,$\upsilon$
\Upsilon
\upsilon
Χ,$\chi$
\Chi
\chi
Ψ,$\psi$
\Psi
\Psi
Ω,$\omega$
\Omega
\omega
Symbol
Latex Syntax
Symbols
Latex Syntax
$\leftarrow$
\leftarrow
$\Leftarrow$
\Leftarrow
$\rightarrow$
\rightarrow
$\Rightarrow$
\Rightarrow
$\leftrightarrow$
\leftrightarrow
$\rightleftharpoons$
\rightleftharpoons
$\uparrow$
\uparrow
$\downarrow$
\downarrow
$\Uparrow$
\Uparrow
$\Downarrow$
\Downarrow
$\Leftrightarrow$
\Leftrightarrow
$\Updownarrow$
\Updownarrow
$\mapsto$
\mapsto
$\longmapsto$
\longmapsto
$\nearrow$
\nearrow
$\searrow$
\searrow
$\leftharpoonup$
\leftharpoonup
$\rightharpoonup$
\rightharpoonup
$\leftharpoondown$
\leftharpoondown
$\rightharpoondown$
\rightharpoondown
Symbol
Latex Syntax
Symbol
Latex Syntax
$\infty$
\infty
$\forall$
\forall
$\Re $
\Re
$\Im$
\Im
$\nabla$
\nabla
$\exists$
\exists
$\partial$
\partial
$\nexists$
\nexists
$\emptyset $
\emptyset
$\varnothing$
\varnothing
$ \wp$
\wp
$\complement$
\complement
$\neg$
\neg
$\cdots$
\cdots
$\square$
\square
$ \surd$
\surd
$\blacksquare$
\blacksquare
$\triangle$
\triangle
Binary Operation/Relation Symbols
Symbol
Latex Syntax
Symbol
Latex Syntax
$\times$
\times
$\cdot$
\cdot
$\div$
\div
$\cap$
\cap
$\cup$
\cup
$\neq$
\neq
$\leq$
\leq
$\geq$
\geq
$\in$
\in
$\perp$
\perp
$\notin$
\notin
$\subset$
\subset
$\simeq$
\simeq
$\approx$
\approx
Math Construct
Latex Code
Output
Sumation
Sum \sum_{n=1}^{\infty} 2^{-n}=1
Sum $$\sum_{n=1}^{\infty} 2^{-n}=1$$
Product
[\prod_{i=a}^{b} f(i) ]
$$[\prod_{i=a}^{b} f(i) ] $$
Coproduct
\coprod{abc}^{xyz}
$$\coprod{abc}^{xyz}$$
Integral
\int_{abc}^{xyz}
\int_{abc}^{xyz}
Integral Over a Closed Contour
\oint{abc}{xyz}
$$\oint{abc}{xyz}$$
Double integral
\iint_{abc}^{xyz}
$$\iint_{abc}^{xyz}$$
Fracton
\frac{abc}{xyz}
$$\frac{abc}{xyz}$$
Prime
f`
$$f`$$
Square Root
\sqrt{abc}
$$\sqrt{abc}$$
Nth-Root
\sqrt[n]{abc}
$$\sqrt[n]{abc}$$
Overline
\overline{abc}
$$\overline{abc}$$
Underline
\underline{abc}
$$\underline{abc}$$
wide hat
\widehat{abc}
$$\widehat{abc}$$
\begin {bmatrix }
\frac {5}{6} & \frac {1}{6} & 0 \\
\frac {5}{6} & 0 & \frac {1}{6} \\
0 & \frac {5}{6} & \frac {1}{6}
\end {bmatrix }
$$\begin{bmatrix}
\frac{5}{6} & \frac{1}{6} & 0 \\
\frac{5}{6} & 0 & \frac{1}{6} \\
0 & \frac{5}{6} & \frac{1}{6}
\end{bmatrix}$$
$$
A_{m,n} =
\begin {bmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end {bmatrix}
$$
$$
A_{m,n} =
\begin{bmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{bmatrix}
$$
\begin {align }
\sigma &= \sqrt {E\left [ \left (X -\mu\right )^2 \right ] } \\
&= \sqrt {E\left [ X^2 \right ]+ E\left [\left (-2\mu X\right )\right ] +E\left [ \mu ^2\right ]} \\
&= \sqrt {E\left [ X^2 \right ] -2\mu E\left [X\right ] + \mu ^2}\\
&= \sqrt {E\left [X^2 \right ]- 2\mu ^2 + \mu ^2 }\\
&= \sqrt {E\left [ X^2 \right ]-\mu ^2}\\
&= \sqrt {E\left [ X^2 \right ] - \left (E\left [X\right ]\right )^2}
\end {align }
$$
\begin{align}
\sigma &= \sqrt{E\left[ \left(X -\mu\right)^2 \right] } \\
&= \sqrt{E\left[ X^2 \right]+ E\left[\left(-2\mu X\right)\right] +E\left[ \mu^2\right]} \\
&= \sqrt{E\left[ X^2 \right] -2\mu E\left[X\right] + \mu^2}\\
&= \sqrt{E\left[X^2 \right]- 2\mu^2 + \mu^2 }\\
&= \sqrt{E\left[ X^2 \right]-\mu^2}\\
&= \sqrt{E\left[ X^2 \right] - \left(E\left[X\right]\right)^2}
\end{align}
$$