Skip to content

Replication code for Labonne, P. (2024). “Asymmetric Uncertainty: Nowcasting using skewness in real-time data.” International Journal of Forecasting https://doi.org/10.1016/j.ijforecast.2024.05.003

Notifications You must be signed in to change notification settings

paullabonne/IJF_24

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IJF_24

Replication code for the paper Labonne, P. (2024). “Asymmetric Uncertainty: Nowcasting using skewness in real-time data.” International Journal of Forecasting https://doi.org/10.1016/j.ijforecast.2024.05.003

The score-driven models are written C++ to make use of the automatic differentiation library CppAD. This code is then wrapped into a package using Rcpp. The package can be installed with:

devtools::install_github("paullabonne/IJF_24/RcppScoreDrivenDFM")
  • R/intro.R loads/installs all the packages needed.
  • R/sd_dfm.R contains functions for estimation, forecast evaluation, simulation etc.
  • The quarto files in the notebooks folder replicate the paper, i.e., build the vintages, real-time recursive estimation, result analysis and simulations.

About

Replication code for Labonne, P. (2024). “Asymmetric Uncertainty: Nowcasting using skewness in real-time data.” International Journal of Forecasting https://doi.org/10.1016/j.ijforecast.2024.05.003

Resources

Stars

Watchers

Forks

Languages