Retina : Low-Power Eye Tracking with Event Camera and Spiking Hardware
🧑🏻🚀 Pietro Bonazzi 1,
Sizhen Bian 1,
Giovanni Lippolis 2,
Yawei Li1,
Sadique Sheik 2,
Michele Magno1
1 ETH Zurich, Switzerland
2 SynSense AG, Switzerland
In the following GIFs, Yellow represents the Ground Truth (GT), and Green represents the Prediction. These images are taken from the validation set.
Leave a star to support our open source initiative!⭐️
@InProceedings{Bonazzi_2024_CVPR,
author = {Bonazzi, Pietro and Bian, Sizhen and Lippolis, Giovanni and Li, Yawei and Sheik, Sadique and Magno, Michele},
title = {Retina : Low-Power Eye Tracking with Event Camera and Spiking Hardware},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2024},
pages = {5684-5692}
}
git clone https://gitlab.ethz.ch/pbonazzi/retina.git
cd retina
conda create -n retina python=3.10 numpy=1.8.1
conda activate retina
pip install -r requirements.txt
pip install git+https://gitlab.com/inivation/dv/dv-processing.git
Click here to download the dataset.
Verify the structure:
.
├── name
│ ├── annotations.csv
│ └── events.aedat4
├── ...
├── silver.csv
Click here to download a pretrained model.
See the list of arguments in the launch_fire function. The run-name
has the format version-name
.
python train.py --run-name="1-train"