This is used for beginner to start learning machine-learning technology. It provides the both of basic and advance libraries.
- Linear Regression: Basically, It will be used for finding mathematical model to predict value in the future that base on previouse values. This requires dataset which is CSV format.
- Logistic Regression: It will be used for binary classificaion.
- Neuron Network: Coming soon
- Deep Q Learning: Coming soon
- Gradient descent
- Linear Regression
/* Prepare parameter */
double learningRate = 0.0001;
int numOfStep = 10000;
/* Read dataset from inputs.csv file */
LinkedList<Dataset> datasets = Dataset.fromFile("src\\com\\github\\pepsi7959\\SupervisedLearning\\inputs.csv");
/* Read expected value from ExpectedValue.csv */
LinkedList<Double> ev = Dataset
.expectedValueFromFile("src\\com\\github\\pepsi7959\\SupervisedLearning\\ExpectedValue.csv");
/* Initialize coefficient (weight) and random value from 0 to 5 */
Matrix weight = new Matrix(datasets.getFirst().getCol(), 1);
weight.random(0, 5);
/* Create Linear Regression object */
LinearRegression LR = new LinearRegression(datasets, ev, learningRate, numOfStep, weight);
/* Train model until it reach number of step */
LR.train();
/*
* Test model by using the inputs, but we recommend you should have dataset for
* testing the model particularly
*/
LR.test(datasets, ev);
- Logistic Regression
/* Prepare parameter */
double learningRate = 0.001;
int numOfStep = 1000000;
/* Read dataset from inputs.csv file */
LinkedList<Dataset> datasets = Dataset
.fromFile("src\\com\\github\\pepsi7959\\UnsupervisedLearning\\inputs.csv");
/* Read expected value from ExpectedValue.csv */
LinkedList<Double> ev = Dataset
.expectedValueFromFile("src\\com\\github\\pepsi7959\\UnsupervisedLearning\\ExpectedValue.csv");
/* Initialize coefficient (weight) and random value from 0 to 5 */
Matrix weight = new Matrix(datasets.getFirst().getCol(), 1);
weight.random(0, 5);
/* Create Logistic Regression object */
LogisticRegression LR = new LogisticRegression(datasets, ev, learningRate, numOfStep, weight);
/* Train model until it reach number of step */
LR.train();
/*
* Test model by using the inputs, but we recommend you should have dataset for
* testing the model particularly
*/
LR.Test(datasets, ev);
- Neuron Network Coming soon