Skip to content

Generates R code for your lavaan models automatically, which helps with reproducible open science

License

Notifications You must be signed in to change notification settings

peterdalle/semproducible

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

70 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Semproducible reproduce a lavaan model

Semproducible is an R package that makes your latent variable models in lavaan reproducible. Semproducible generates all the necessary data and R code from your existing lavaan model.

This package makes it possible to reproduce a model without disclosing the raw data (which might be sensitive).

You can use semproducible in two ways:

  1. Generate reproducible code from a lavaan model
  2. Generate reproducible code from a data frame

Benefits

  • Only one line of code to reproduce your model
  • The generated code fit a journal appendix
  • Researchers can reproduce your model (and try alternative model specifications)

Install

devtools::install_github("peterdalle/semproducible")

Usage

semproducible(x, formula)

Where x is either a lavaan model or a data frame.

And formula is the lavaan formula syntax (e.g., ind60 =~ x1 + x2 + x3).

Examples

1. Generate code from a lavaan model

Let's say you have the following lavaan model, and you want to make it reproducible:

library(lavaan)

# Example: http://lavaan.ugent.be/tutorial/sem.html
formula <- "# latent variables
              ind60 =~ x1 + x2 + x3
              dem60 =~ y1 + y2 + y3 + y4
              dem65 =~ y5 + y6 + y7 + y8
            # regressions
              dem60 ~ ind60
              dem65 ~ ind60 + dem60
            # residual covariances
              y1 ~~ y5
              y2 ~~ y4 + y6
              y3 ~~ y7
              y4 ~~ y8
              y6 ~~ y8"

fit <- sem(formula, data=PoliticalDemocracy)

The only thing you need to do is to pass fit and formula into semproducible:

library(semproducible)

semproducible(fit, formula)

2. Generate code from a data frame

If you have a data frame with many variables, you can reproduce the entire data frame and let other researchers choose variables to model.

library(semproducible)
library(tidyverse)

iris %>% 
  select(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width) %>% 
  semproducible(formula = "Sepal.Length ~ Sepal.Width + Petal.Length")

3. Save the generated code to a file

code <- semproducible(fit, formula)

save_code(code, "filename.R")

What the generated code looks like

If you run example 2 above, the generated code will look like this:

library(tibble)
library(lavaan)

# Number of observations.
observations <- 150

# Covariance matrix.
cov_mat <- tribble(~Sepal.Length, ~Sepal.Width, ~Petal.Length, ~Petal.Width,
              0.685693512304251, -0.0424340044742729, 1.27431543624161, 0.516270693512304,               
              -0.0424340044742729, 0.189979418344519, -0.329656375838926, -0.12163937360179,               
              1.27431543624161, -0.329656375838926, 3.11627785234899, 1.29560939597315,               
              0.516270693512304, -0.12163937360179, 1.29560939597315, 0.581006263982103)

# Convert data frame to matrix (that lavaan can handle).
cov_mat <- as.matrix(cov_mat)

# Rows should have names too.
rownames(cov_mat) <- colnames(cov_mat)

# SEM model in lavaan syntax.
formula <- 'Sepal.Length ~ Sepal.Width + Petal.Length'

# Fit SEM model.
fit <- lavaan::sem(formula, sample.cov = cov_mat, sample.nobs = observations)

# Show results.
summary(fit)

And if you then run the generated code above, you will notice that it has been successfully reproduced.

Questions

Documentation

Load semproducible and then run ?semproducible in the R console to view the full documentation.

Support

Report problems or request a new feature by submitting a new issue.

Contribute

You can help with:

  • Test semproducible in your project, and report a bug
  • Read the documentation and verify that it corresponds to actual behavior

License

MIT