This repository contains the implementation source code of the following paper:
Explainable Debugger for Black-box Machine Learning Models
BibTeX:
@inproceedings{rasouli2021explainable,
title={Explainable Debugger for Black-box Machine Learning Models},
author={Rasouli, Peyman and Yu, Ingrid Chieh},
booktitle={2021 International Joint Conference on Neural Networks (IJCNN)},
pages={1--10},
year={2021},
organization={IEEE}
}
1- Clone the repository using HTTP/SSH:
git clone https://github.com/peymanrasouli/XdebugML
2- Create a conda virtual environment:
conda create -n XdebugML python=3.6
3- Activate the conda environment:
conda activate XdebugML
4- Standing in XdebugML directory, install the requirements:
pip install -r requirements.txt
5- Install the Accumulated Local Effects (ALE) package:
pip install git+https://github.com/MaximeJumelle/ALEPython.git@dev#egg=alepython
6- Install SHAP package:
pip install git+https://github.com/slundberg/shap.git
7- Run initial setup:
python setup.py
8- Install TBB library required by EXPLAN:
# Ubuntu/Debian
sudo apt-get update
sudo apt-get install libtbb2
# CentOS
sudo yum update
sudo yum install tbb
1- To reproduce the neighborhood influence results run:
python neighborhood_influence.py
2- To reproduce the occurrence histogram results run:
python occurrence_histogram.py
3- To explain an instance using quasi-global explanation method run:
python quasi_global_explanation.py
4- To reproduce the diversity results of quasi-global explanations run:
python quasi_global_explanation_diversity.py
5- To explain an instance globally run:
python global_explanation.py
6- To visualize feature values vs. contribution values run:
python data_visualization.py