schema is a library for validating Python data structures, such as those obtained from config-files, forms, external services or command-line parsing, converted from JSON/YAML (or something else) to Python data-types.
Here is a quick example to get a feeling of schema, validating a list of entries with personal information:
>>> from schema import Schema, And, Use, Optional
>>> schema = Schema([{'name': And(str, len),
... 'age': And(Use(int), lambda n: 18 <= n <= 99),
... Optional('gender'): And(str, Use(str.lower),
... lambda s: s in ('squid', 'kid'))}])
>>> data = [{'name': 'Sue', 'age': '28', 'gender': 'Squid'},
... {'name': 'Sam', 'age': '42'},
... {'name': 'Sacha', 'age': '20', 'gender': 'KID'}]
>>> validated = schema.validate(data)
>>> assert validated == [{'name': 'Sue', 'age': 28, 'gender': 'squid'},
... {'name': 'Sam', 'age': 42},
... {'name': 'Sacha', 'age' : 20, 'gender': 'kid'}]
If data is valid, Schema.validate
will return the validated data
(optionally converted with Use calls, see below).
If data is invalid, Schema
will raise SchemaError
exception.
If you just want to check that the data is valid, schema.is_valid(data)
will
return True
or False
.
Use pip or easy_install:
pip install schema
Alternatively, you can just drop schema.py
file into your project—it is
self-contained.
- schema is tested with Python 2.6, 2.7, 3.2, 3.3, 3.4, 3.5, 3.6 and PyPy.
- schema follows semantic versioning.
If Schema(...)
encounters a type (such as int
, str
, object
,
etc.), it will check if the corresponding piece of data is an instance of that type,
otherwise it will raise SchemaError
.
>>> from schema import Schema
>>> Schema(int).validate(123)
123
>>> Schema(int).validate('123')
Traceback (most recent call last):
...
SchemaUnexpectedTypeError: '123' should be instance of 'int'
>>> Schema(object).validate('hai')
'hai'
If Schema(...)
encounters a callable (function, class, or object with
__call__
method) it will call it, and if its return value evaluates to
True
it will continue validating, else—it will raise SchemaError
.
>>> import os
>>> Schema(os.path.exists).validate('./')
'./'
>>> Schema(os.path.exists).validate('./non-existent/')
Traceback (most recent call last):
...
SchemaError: exists('./non-existent/') should evaluate to True
>>> Schema(lambda n: n > 0).validate(123)
123
>>> Schema(lambda n: n > 0).validate(-12)
Traceback (most recent call last):
...
SchemaError: <lambda>(-12) should evaluate to True
If Schema(...)
encounters an object with method validate
it will run
this method on corresponding data as data = obj.validate(data)
. This method
may raise SchemaError
exception, which will tell Schema
that that piece
of data is invalid, otherwise—it will continue validating.
An example of "validatable" is Regex
, that tries to match a string or a
buffer with the given regular expression (itself as a string, buffer or
compiled regex SRE_Pattern
):
>>> from schema import Regex
>>> import re
>>> Regex(r'^foo').validate('foobar')
'foobar'
>>> Regex(r'^[A-Z]+$', flags=re.I).validate('those-dashes-dont-match')
Traceback (most recent call last):
...
SchemaError: Regex('^[A-Z]+$', flags=re.IGNORECASE) does not match 'those-dashes-dont-match'
For a more general case, you can use Use
for creating such objects.
Use
helps to use a function or type to convert a value while validating it:
>>> from schema import Use
>>> Schema(Use(int)).validate('123')
123
>>> Schema(Use(lambda f: open(f, 'a'))).validate('LICENSE-MIT')
<open file 'LICENSE-MIT', mode 'a' at 0x...>
Dropping the details, Use
is basically:
class Use(object):
def __init__(self, callable_):
self._callable = callable_
def validate(self, data):
try:
return self._callable(data)
except Exception as e:
raise SchemaError('%r raised %r' % (self._callable.__name__, e))
Sometimes you need to transform and validate part of data, but keep original data unchanged.
Const
helps to keep your data safe:
>> from schema import Use, Const, And, Schema
>> from datetime import datetime
>> is_future = lambda date: datetime.now() > date
>> to_json = lambda v: {"timestamp": v}
>> Schema(And(Const(And(Use(datetime.fromtimestamp), is_future)), Use(to_json))).validate(1234567890)
{"timestamp": 1234567890}
Now you can write your own validation-aware classes and data types.
If Schema(...)
encounters an instance of list
, tuple
, set
or
frozenset
, it will validate contents of corresponding data container
against schemas listed inside that container:
>>> Schema([1, 0]).validate([1, 1, 0, 1])
[1, 1, 0, 1]
>>> Schema((int, float)).validate((5, 7, 8, 'not int or float here'))
Traceback (most recent call last):
...
SchemaError: Or(<type 'int'>, <type 'float'>) did not validate 'not int or float here'
'not int or float here' should be instance of 'float'
If Schema(...)
encounters an instance of dict
, it will validate data
key-value pairs:
>>> d = Schema({'name': str,
... 'age': lambda n: 18 <= n <= 99}).validate({'name': 'Sue', 'age': 28})
>>> assert d == {'name': 'Sue', 'age': 28}
You can specify keys as schemas too:
>>> schema = Schema({str: int, # string keys should have integer values
... int: None}) # int keys should be always None
>>> data = schema.validate({'key1': 1, 'key2': 2,
... 10: None, 20: None})
>>> schema.validate({'key1': 1,
... 10: 'not None here'})
Traceback (most recent call last):
...
SchemaError: Key '10' error:
None does not match 'not None here'
This is useful if you want to check certain key-values, but don't care about others:
>>> schema = Schema({'<id>': int,
... '<file>': Use(open),
... str: object}) # don't care about other str keys
>>> data = schema.validate({'<id>': 10,
... '<file>': 'README.rst',
... '--verbose': True})
You can mark a key as optional as follows:
>>> from schema import Optional
>>> Schema({'name': str,
... Optional('occupation'): str}).validate({'name': 'Sam'})
{'name': 'Sam'}
Optional
keys can also carry a default
, to be used when no key in the
data matches:
>>> from schema import Optional
>>> Schema({Optional('color', default='blue'): str,
... str: str}).validate({'texture': 'furry'}
... ) == {'color': 'blue', 'texture': 'furry'}
True
Defaults are used verbatim, not passed through any validators specified in the value.
default can also be a callable:
>>> from schema import Schema, Optional
>>> Schema({Optional('data', default=dict): {}}).validate({}) == {'data': {}}
True
Also, a caveat: If you specify types, schema won't validate the empty dict:
>>> Schema({int:int}).is_valid({})
False
To do that, you need Schema(Or({int:int}, {}))
. This is unlike what happens with
lists, where Schema([int]).is_valid([])
will return True.
schema has classes And
and Or
that help validating several schemas
for the same data:
>>> from schema import And, Or
>>> Schema({'age': And(int, lambda n: 0 < n < 99)}).validate({'age': 7})
{'age': 7}
>>> Schema({'password': And(str, lambda s: len(s) > 6)}).validate({'password': 'hai'})
Traceback (most recent call last):
...
SchemaError: Key 'password' error:
<lambda>('hai') should evaluate to True
>>> Schema(And(Or(int, float), lambda x: x > 0)).validate(3.1415)
3.1415
In a dictionary, you can also combine two keys in a "one or the other" manner. To do so, use the Or class as a key:
You can define hooks which are functions that are executed whenever a valid key:value is found. The Forbidden class is an example of this.
You can mark a key as forbidden as follows:
>>> from schema import Forbidden
>>> Schema({Forbidden('age'): object}).validate({'age': 50})
Traceback (most recent call last):
...
SchemaForbiddenKeyError: Forbidden key encountered: 'age' in {'age': 50}
A few things are worth noting. First, the value paired with the forbidden key determines whether it will be rejected:
>>> Schema({Forbidden('age'): str, 'age': int}).validate({'age': 50})
{'age': 50}
Note: if we hadn't supplied the 'age' key here, the call would have failed too, but with SchemaWrongKeyError, not SchemaForbiddenKeyError.
Second, Forbidden has a higher priority than standard keys, and consequently than Optional. This means we can do that:
>>> Schema({Forbidden('age'): object, Optional(str): object}).validate({'age': 50})
Traceback (most recent call last):
...
SchemaForbiddenKeyError: Forbidden key encountered: 'age' in {'age': 50}
You can also define your own hooks. The following hook will call _my_function if key is encountered.
from schema import Hook
def _my_function(key, scope, error):
print(key, scope, error)
Hook("key", handler=_my_function)
Here's an example where a Deprecated class is added to log warnings whenever a key is encountered:
from schema import Hook, Schema
class Deprecated(Hook):
def __init__(self, *args, **kwargs):
kwargs["handler"] = lambda key, *args: logging.warn(f"`{key}` is deprecated. " + (self._error or ""))
super(Deprecated, self).__init__(*args, **kwargs)
Schema({Deprecated("test", "custom error message."): object}, ignore_extra_keys=True).validate({"test": "value"})
...
WARNING: `test` is deprecated. custom error message.
The Schema(...)
parameter ignore_extra_keys
causes validation to ignore extra keys in a dictionary, and also to not return them after validating.
>>> schema = Schema({'name': str}, ignore_extra_keys=True)
>>> schema.validate({'name': 'Sam', 'age': '42'})
{'name': 'Sam'}
If you would like any extra keys returned, use object: object
as one of the key/value pairs, which will match any key and any value.
Otherwise, extra keys will raise a SchemaError
.
You can pass a keyword argument error
to any of validatable classes
(such as Schema
, And
, Or
, Regex
, Use
) to report this error
instead of a built-in one.
>>> Schema(Use(int, error='Invalid year')).validate('XVII')
Traceback (most recent call last):
...
SchemaError: Invalid year
You can see all errors that occurred by accessing exception's exc.autos
for auto-generated error messages, and exc.errors
for errors
which had error
text passed to them.
You can exit with sys.exit(exc.code)
if you want to show the messages
to the user without traceback. error
messages are given precedence in that
case.
Here is a quick example: validation of create a gist request from github API.
>>> gist = '''{"description": "the description for this gist",
... "public": true,
... "files": {
... "file1.txt": {"content": "String file contents"},
... "other.txt": {"content": "Another file contents"}}}'''
>>> from schema import Schema, And, Use, Optional
>>> import json
>>> gist_schema = Schema(And(Use(json.loads), # first convert from JSON
... # use basestring since json returns unicode
... {Optional('description'): basestring,
... 'public': bool,
... 'files': {basestring: {'content': basestring}}}))
>>> gist = gist_schema.validate(gist)
# gist:
{u'description': u'the description for this gist',
u'files': {u'file1.txt': {u'content': u'String file contents'},
u'other.txt': {u'content': u'Another file contents'}},
u'public': True}
Using schema with docopt
Assume you are using docopt with the following usage-pattern:
Usage: my_program.py [--count=N] <path> <files>...
and you would like to validate that <files>
are readable, and that
<path>
exists, and that --count
is either integer from 0 to 5, or
None
.
Assuming docopt returns the following dict:
>>> args = {'<files>': ['LICENSE-MIT', 'setup.py'],
... '<path>': '../',
... '--count': '3'}
this is how you validate it using schema
:
>>> from schema import Schema, And, Or, Use
>>> import os
>>> s = Schema({'<files>': [Use(open)],
... '<path>': os.path.exists,
... '--count': Or(None, And(Use(int), lambda n: 0 < n < 5))})
>>> args = s.validate(args)
>>> args['<files>']
[<open file 'LICENSE-MIT', mode 'r' at 0x...>, <open file 'setup.py', mode 'r' at 0x...>]
>>> args['<path>']
'../'
>>> args['--count']
3
As you can see, schema validated data successfully, opened files and
converted '3'
to int
.
You can also generate standard draft-07 JSON schema from a dict Schema. This can be used to add word completion and validation directly in code editors. Here's an example:
>>> from schema import Optional, Schema
>>> import json
>>> s = Schema({"test": str,
... "nested": {Optional("other"): str}
... })
>>> json_schema = json.dumps(s.json_schema("https://example.com/my-schema.json"))
# json_schema
{
"type":"object",
"properties": {
"test": {"type": "string"},
"nested": {
"type":"object",
"properties": {
"other": {"type": "string"}
},
"required": [],
"additionalProperties":false
}
},
"required":[
"test",
"nested"
],
"additionalProperties":false,
"id":"https://example.com/my-schema.json",
"$schema":"http://json-schema.org/draft-07/schema#"
}
Please note that this is a beta feature. Some JSON schema features are not implemented. Some caveats:
- There are no object references, items of type object are always fully rendered
- Some JSON schema types are not implemented. In those cases, an empty dict will be rendered. This disables all validation for the item.
- Validations other than type are not implemented. This includes features such as integers' minimum and maximum or arrays' minItems