Skip to content

pirocv/HEAL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HEAL (Hierarchical Estimate from Agnostic Learning)

  • Machine learning-based genome analysis and risk prediction framework.

supported file type

  • csv file (Mutation burden matrix)
    • row: sample ID, column: gene name

requirements

  • python3
  • pandas
  • numpy
  • scikit-learn
  • scipy

How to run

Step0 Prepare mutation burden matrix.

  1. Annotate VCF file of whole exome or genome sequencing data with gene name, deleteriousness score, and allele frequency info.
  2. Preprosess annotated genotype data to calculate mutation burden. Sample mutation burden file is available in toy_data.

Step 1 Run the HEAL script

  1. Input file: Mutation burden matrix.

Step 2 The model outputs

  1. Disease gene lists.
  2. Genetic risk prediction model.
  3. Prediction performance summary.

Usage

Run the HEAL script from the command line with the following arguments:

python HEAL.py --file_path <path_to_input_file> [options]

Command-line Arguments

Argument Type Required Default Description
--file_path str Yes - Full path to the input file
--output str No Current working directory Output path
--splits int No 5 Number of splits for cross-validation
--trials int No 1 Number of trials to run
--l1 float No 1.0 Lower bound of lambda candidates
--l2 float No 40.0 Upper bound of lambda candidates
--lfidelity int No 5 Fidelity of linspace of lambda candidates
--scoring str No 'roc_auc' Scoring metric to maximize
--random_state int No 42 Random state to start from
--tts bool No False Use train_test_split instead of StratifiedKFold for outer CV

Citation

Please cite the following paper

  • Hirotaka Ieki, Kaoru Ito, Sai Zhang, Satoshi Koyama, Martin Kjellberg, Hiroki Yoshida, Ryo Kurosawa, Hiroshi Matsunaga, Kazuo Miyazawa, Nobuyuki Enzan, Changhoon Kim, Jeong-Sun Seo, Koichiro Higasa, Kouichi Ozaki, Yoshihiro Onouchi, Koichi Matsuda, Yoichiro Kamatani, Chikashi Terao, Fumihiko Matsuda, Michael Snyder, Issei Komuro "Machine Learning Reveals the Contribution of Rare Genetic Variants and Enhances Risk Prediction for Coronary Artery Disease in the Japanese Population" medRxiv 2024 doi.org/10.1101/2024.08.13.24311909
snyderlab_logo hp_riken cgi_logo

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages