Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Word2Vec/Doc2Vec offer model-minimization method Fix issue #446 #987

Merged
merged 18 commits into from
Nov 13, 2016
Merged
Show file tree
Hide file tree
Changes from 17 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
Changes
=======
0.13.5, 2016-11-12
* Add delete_temporary_training_data() function to word2vec and doc2vec models. (@deepmipt-VladZhukov, [#987](https://github.com/RaRe-Technologies/gensim/pull/987))

0.13.4, 2016-10-25
* Passed all the params through the apply call in lda.get_document_topics(), test case to use the per_word_topics through the corpus in test_ldamodel (@parthoiiitm, [#978](https://github.com/RaRe-Technologies/gensim/pull/978))
Expand Down
13 changes: 13 additions & 0 deletions gensim/models/doc2vec.py
Original file line number Diff line number Diff line change
Expand Up @@ -778,6 +778,19 @@ def __str__(self):
segments.append('t%d' % self.workers)
return '%s(%s)' % (self.__class__.__name__, ','.join(segments))

def delete_temporary_training_data(self, keep_doctags_vectors=True, keep_inference=True):
"""
Discard parameters that are used in training and score. Use if you're sure you're done training a model.
Use `remove_doctags_vectors` if you don't want to save doctags vectors,
in this case you can't to use docvecs's most_similar, similarity etc. methods.
Use `no_inference` if you don't want to store parameters that is used for infer_vector method (you will not be able to use infer_vector)
"""
if not keep_inference:
self._minimize_model(False, False, False)
if self.docvecs and hasattr(self.docvecs, 'doctag_syn0') and not keep_doctags_vectors:
del self.docvecs.doctag_syn0
if self.docvecs and hasattr(self.docvecs, 'doctag_syn0_lockf'):
del self.docvecs.doctag_syn0_lockf

class TaggedBrownCorpus(object):
"""Iterate over documents from the Brown corpus (part of NLTK data), yielding
Expand Down
23 changes: 22 additions & 1 deletion gensim/models/word2vec.py
Original file line number Diff line number Diff line change
Expand Up @@ -462,7 +462,7 @@ def __init__(
self.total_train_time = 0
self.sorted_vocab = sorted_vocab
self.batch_words = batch_words

self.model_trimmed_post_training = False
if sentences is not None:
if isinstance(sentences, GeneratorType):
raise TypeError("You can't pass a generator as the sentences argument. Try an iterator.")
Expand Down Expand Up @@ -754,6 +754,8 @@ def train(self, sentences, total_words=None, word_count=0,
sentences are the same as those that were used to initially build the vocabulary.

"""
if (self.model_trimmed_post_training):
raise RuntimeError("Parameters for training were discarded using model_trimmed_post_training method")
if FAST_VERSION < 0:
import warnings
warnings.warn("C extension not loaded for Word2Vec, training will be slow. "
Expand Down Expand Up @@ -1751,6 +1753,25 @@ def accuracy(self, questions, restrict_vocab=30000, most_similar=most_similar, c
def __str__(self):
return "%s(vocab=%s, size=%s, alpha=%s)" % (self.__class__.__name__, len(self.index2word), self.vector_size, self.alpha)

def _minimize_model(self, save_syn1 = False, save_syn1neg = False, save_syn0_lockf = False):
if hasattr(self, 'syn1') and not save_syn1:
del self.syn1
if hasattr(self, 'syn1neg') and not save_syn1neg:
del self.syn1neg
if hasattr(self, 'syn0_lockf') and not save_syn0_lockf:
del self.syn0_lockf
self.model_trimmed_post_training = True

def delete_temporary_training_data(self, replace=False):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can we rename the replace parameter to replace_word_vectors_with_normalized?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I called the parameter this way because we have init_sims(replace=False), with the parameter of the same idea. Should we rename parameter of init_sims to?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

in the init_sims context it is self-explanatory. But in the delete_temporary_training_data it looks strange

"""
Discard parameters that are used in training and score. Use if you're sure you're done training a model.
If `replace` is set, forget the original vectors and only keep the normalized
ones = saves lots of memory!
"""
if replace:
self.init_sims(replace=True)
self._minimize_model()

def save(self, *args, **kwargs):
# don't bother storing the cached normalized vectors, recalculable table
kwargs['ignore'] = kwargs.get('ignore', ['syn0norm', 'table', 'cum_table'])
Expand Down
28 changes: 28 additions & 0 deletions gensim/test/test_doc2vec.py
Original file line number Diff line number Diff line change
Expand Up @@ -287,6 +287,34 @@ def models_equal(self, model, model2):
self.assertEqual(len(model.docvecs.offset2doctag), len(model2.docvecs.offset2doctag))
self.assertTrue(np.allclose(model.docvecs.doctag_syn0, model2.docvecs.doctag_syn0))

def test_delete_temporary_training_data(self):
"""Test doc2vec model after delete_temporary_training_data"""
for i in [0, 1]:
for j in [0, 1]:
model = doc2vec.Doc2Vec(sentences, size=5, min_count=1, window=4, hs=i, negative=j)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

add asserts that it has all the attributes that are about to be deleted

if i:
self.assertTrue(hasattr(model, 'syn1'))
Copy link
Contributor

@tmylk tmylk Nov 10, 2016

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

should we assert here that syn1 is deleted by _minimize_model?
Same for other attributes

if j:
self.assertTrue(hasattr(model, 'syn1neg'))
self.assertTrue(hasattr(model, 'syn0_lockf'))
model.delete_temporary_training_data(keep_doctags_vectors=False, keep_inference=False)
self.assertTrue(len(model['human']), 10)
self.assertTrue(model.vocab['graph'].count, 5)
self.assertTrue(not hasattr(model, 'syn1'))
self.assertTrue(not hasattr(model, 'syn1neg'))
self.assertTrue(not hasattr(model, 'syn0_lockf'))
self.assertTrue(model.docvecs and not hasattr(model.docvecs, 'doctag_syn0'))
self.assertTrue(model.docvecs and not hasattr(model.docvecs, 'doctag_syn0_lockf'))
model = doc2vec.Doc2Vec(list_corpus, dm=1, dm_mean=1, size=24, window=4, hs=1, negative=0, alpha=0.05, min_count=2, iter=20)
model.delete_temporary_training_data(keep_doctags_vectors=True, keep_inference=True)
self.assertTrue(model.docvecs and hasattr(model.docvecs, 'doctag_syn0'))
self.assertTrue(hasattr(model, 'syn1'))
self.model_sanity(model)
model = doc2vec.Doc2Vec(list_corpus, dm=1, dm_mean=1, size=24, window=4, hs=0, negative=1, alpha=0.05, min_count=2, iter=20)
model.delete_temporary_training_data(keep_doctags_vectors=True, keep_inference=True)
self.model_sanity(model)
self.assertTrue(hasattr(model, 'syn1neg'))

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Seems I "sync' in git without "commit", when I added self.docvecs, 'doctag_syn0' checks :) will fix it

@log_capture()
def testBuildVocabWarning(self, l):
"""Test if logger warning is raised on non-ideal input to a doc2vec model"""
Expand Down
27 changes: 26 additions & 1 deletion gensim/test/test_word2vec.py
Original file line number Diff line number Diff line change
Expand Up @@ -434,7 +434,7 @@ def testSimilarities(self):
model = word2vec.Word2Vec(size=2, min_count=1, sg=0, hs=0, negative=2)
model.build_vocab(sentences)
model.train(sentences)

self.assertTrue(model.n_similarity(['graph', 'trees'], ['trees', 'graph']))
self.assertTrue(model.n_similarity(['graph'], ['trees']) == model.similarity('graph', 'trees'))
self.assertRaises(ZeroDivisionError, model.n_similarity, ['graph', 'trees'], [])
Expand Down Expand Up @@ -482,6 +482,31 @@ def models_equal(self, model, model2):
most_common_word = max(model.vocab.items(), key=lambda item: item[1].count)[0]
self.assertTrue(np.allclose(model[most_common_word], model2[most_common_word]))

def testDeleteTemporaryTrainingData(self):
"""Test word2vec model after delete_temporary_training_data"""
for i in [0, 1]:
for j in [0, 1]:
model = word2vec.Word2Vec(sentences, size=10, min_count=0, seed=42, hs=i, negative=j)
if i:
self.assertTrue(hasattr(model, 'syn1'))
if j:
self.assertTrue(hasattr(model, 'syn1neg'))
self.assertTrue(hasattr(model, 'syn0_lockf'))
model.delete_temporary_training_data(replace=True)
self.assertTrue(len(model['human']), 10)
self.assertTrue(len(model.vocab), 12)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please tests that necessary attributes are indeed deleted

self.assertTrue(model.vocab['graph'].count, 3)
self.assertTrue(not hasattr(model, 'syn1'))
self.assertTrue(not hasattr(model, 'syn1neg'))
self.assertTrue(not hasattr(model, 'syn0_lockf'))

def testNormalizeAfterTrainingData(self):
model = word2vec.Word2Vec(sentences, min_count=1)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this is a separate test.

model.save_word2vec_format(testfile(), binary=True)
norm_only_model = word2vec.Word2Vec.load_word2vec_format(testfile(), binary=True)
norm_only_model.delete_temporary_training_data(replace=True)
self.assertFalse(np.allclose(model['human'], norm_only_model['human']))

@log_capture()
def testBuildVocabWarning(self, l):
"""Test if warning is raised on non-ideal input to a word2vec model"""
Expand Down