Skip to content

Commit

Permalink
Benchmark polynomials of different degrees.
Browse files Browse the repository at this point in the history
  • Loading branch information
afck committed Aug 30, 2018
1 parent d783f27 commit 02109b5
Show file tree
Hide file tree
Showing 3 changed files with 30 additions and 14 deletions.
2 changes: 1 addition & 1 deletion .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ env:
- RUST_NEXT=nightly-2018-07-13
script:
- cargo +${RUST_NEXT} clippy -- --deny clippy
- cargo +${RUST_NEXT} clippy --tests --examples -- --deny clippy
- cargo +${RUST_NEXT} clippy --tests --examples --benches -- --deny clippy
- cargo +${RUST_NEXT} clippy --all-features -- --deny clippy
- cargo +${RUST_NEXT} clippy --all-features --tests -- --deny clippy
- cargo +${RUST_NEXT} fmt -- --check
Expand Down
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -66,18 +66,18 @@ Disabling memory locking is useful because it removes the possibility of tests f

## Application Details

The basic usage outline is:
The basic usage outline is:
* choose a threshold value `t`
* create a key set
* distribute `N` secret key shares among the participants
* publish the public master key
* publish the public master key

A third party can now encrypt a message to the public master key
and any set of `t + 1` participants *(but no fewer!)* can collaborate to
decrypt it. Also, any set of `t + 1` participants can collaborate to sign a message,
producing a signature that is verifiable with the public master key.

In this system, a signature is unique and independent of
In this system, a signature is unique and independent of
the set of participants that produced it. If `S1` and `S2` are
signatures for the same message, produced by two different sets of `t + 1`
secret key share holders, both signatures will be valid AND
Expand Down
36 changes: 26 additions & 10 deletions benches/bench.rs
Original file line number Diff line number Diff line change
@@ -1,29 +1,45 @@
#[macro_use]
extern crate criterion;
extern crate pairing;
extern crate rand;
extern crate threshold_crypto;

use criterion::Criterion;
use pairing::bls12_381::Fr;
use threshold_crypto::poly::Poly;

mod poly_benches {
use super::*;
use rand::Rng;

// Benchmarks multiplication of two degree 3 polynomials.
// Benchmarks multiplication of two polynomials.
fn multiplication(c: &mut Criterion) {
let mut rng = rand::thread_rng();
let lhs = Poly::random(3, &mut rng).unwrap();
let rhs = Poly::random(3, &mut rng).unwrap();
c.bench_function("Polynomial multiplication", move |b| b.iter(|| &lhs * &rhs));
c.bench_function_over_inputs(
"Polynomial multiplication",
move |b, &&deg| {
let rand_factors = || {
let lhs = Poly::random(deg, &mut rng).unwrap();
let rhs = Poly::random(deg, &mut rng).unwrap();
(lhs, rhs)
};
b.iter_with_setup(rand_factors, |(lhs, rhs)| &lhs * &rhs)
},
&[5, 10, 20, 40],
);
}

// Benchmarks Lagrange interpolation for a degree 3 polynomial.
// Benchmarks Lagrange interpolation for a polynomial.
fn interpolate(c: &mut Criterion) {
// Points from the the polynomial: `y(x) = 5x^3 + 0x^2 + x - 2`.
let sample_points = vec![(-1, -8), (2, 40), (3, 136), (5, 628)];
c.bench_function("Polynomial interpolation", move |b| {
b.iter(|| Poly::interpolate(sample_points.clone()).unwrap())
});
let mut rng = rand::thread_rng();
c.bench_function_over_inputs(
"Polynomial interpolation",
move |b, &&deg| {
let rand_samples = || (0..=deg).map(|i| (i, rng.gen::<Fr>())).collect::<Vec<_>>();
b.iter_with_setup(rand_samples, |samples| Poly::interpolate(samples).unwrap())
},
&[5, 10, 20, 40],
);
}

criterion_group!{
Expand Down

0 comments on commit 02109b5

Please sign in to comment.