Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: Return appropriate data type for time mean and median #14471

Merged
merged 6 commits into from
Apr 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -116,14 +116,14 @@ impl Series {
Float64 => SeriesWrap(self.f64().unwrap().clone()).agg_median(groups),
dt if dt.is_numeric() => apply_method_physical_integer!(self, agg_median, groups),
#[cfg(feature = "dtype-datetime")]
dt @ (Datetime(_, _) | Duration(_)) => self
dt @ (Datetime(_, _) | Duration(_) | Time) => self
.to_physical_repr()
.agg_median(groups)
.cast(&Int64)
.unwrap()
.cast(dt)
.unwrap(),
dt @ (Date | Time) => {
dt @ Date => {
let ca = self.to_physical_repr();
let physical_type = ca.dtype();
let s = apply_method_physical_integer!(ca, agg_median, groups);
Expand Down Expand Up @@ -174,14 +174,14 @@ impl Series {
Float64 => SeriesWrap(self.f64().unwrap().clone()).agg_mean(groups),
dt if dt.is_numeric() => apply_method_physical_integer!(self, agg_mean, groups),
#[cfg(feature = "dtype-datetime")]
dt @ (Datetime(_, _) | Duration(_)) => self
dt @ (Datetime(_, _) | Duration(_) | Time) => self
.to_physical_repr()
.agg_mean(groups)
.cast(&Int64)
.unwrap()
.cast(dt)
.unwrap(),
dt @ (Date | Time) => {
dt @ Date => {
let ca = self.to_physical_repr();
let physical_type = ca.dtype();
let s = apply_method_physical_integer!(ca, agg_mean, groups);
Expand Down
3 changes: 3 additions & 0 deletions crates/polars-core/src/series/implementations/dates_time.rs
Original file line number Diff line number Diff line change
Expand Up @@ -323,6 +323,9 @@ macro_rules! impl_dyn_series {
fn min_as_series(&self) -> PolarsResult<Series> {
Ok(self.0.min_as_series().$into_logical())
}
fn median_as_series(&self) -> PolarsResult<Series> {
Series::new(self.name(), &[self.median().map(|v| v as i64)]).cast(self.dtype())
}

fn clone_inner(&self) -> Arc<dyn SeriesTrait> {
Arc::new(SeriesWrap(Clone::clone(&self.0)))
Expand Down
4 changes: 4 additions & 0 deletions crates/polars-core/src/series/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -778,6 +778,10 @@ impl Series {
.cast(dt)
.unwrap()
},
#[cfg(feature = "dtype-time")]
dt @ DataType::Time => Series::new(self.name(), &[self.mean().map(|v| v as i64)])
.cast(dt)
.unwrap(),
_ => return Series::full_null(self.name(), 1, self.dtype()),
}
}
Expand Down
10 changes: 8 additions & 2 deletions crates/polars-lazy/src/frame/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1403,7 +1403,10 @@ impl LazyFrame {
dt.is_numeric()
|| matches!(
dt,
DataType::Boolean | DataType::Duration(_) | DataType::Datetime(_, _)
DataType::Boolean
| DataType::Duration(_)
| DataType::Datetime(_, _)
| DataType::Time
)
},
|name| col(name).mean(),
Expand All @@ -1421,7 +1424,10 @@ impl LazyFrame {
dt.is_numeric()
|| matches!(
dt,
DataType::Boolean | DataType::Duration(_) | DataType::Datetime(_, _)
DataType::Boolean
| DataType::Duration(_)
| DataType::Datetime(_, _)
| DataType::Time
)
},
|name| col(name).median(),
Expand Down
6 changes: 3 additions & 3 deletions py-polars/polars/series/datetime.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from polars._utils.deprecation import deprecate_function, deprecate_renamed_function
from polars._utils.unstable import unstable
from polars._utils.wrap import wrap_s
from polars.datatypes import Date, Datetime, Duration
from polars.datatypes import Date, Datetime, Duration, Time
from polars.series.utils import expr_dispatch

if TYPE_CHECKING:
Expand Down Expand Up @@ -88,7 +88,7 @@ def median(self) -> TemporalLiteral | float | None:
if out is not None:
if s.dtype == Date:
return to_py_date(int(out)) # type: ignore[arg-type]
elif s.dtype in (Datetime, Duration):
elif s.dtype in (Datetime, Duration, Time):
return out # type: ignore[return-value]
else:
return to_py_datetime(int(out), s.dtype.time_unit) # type: ignore[arg-type, attr-defined]
Expand All @@ -112,7 +112,7 @@ def mean(self) -> TemporalLiteral | float | None:
if out is not None:
if s.dtype == Date:
return to_py_date(int(out)) # type: ignore[arg-type]
elif s.dtype in (Datetime, Duration):
elif s.dtype in (Datetime, Duration, Time):
return out # type: ignore[return-value]
else:
return to_py_datetime(int(out), s.dtype.time_unit) # type: ignore[arg-type, attr-defined]
Expand Down
4 changes: 2 additions & 2 deletions py-polars/src/series/aggregation.rs
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ impl PySeries {
.map_err(PyPolarsErr::from)?,
)
.into_py(py)),
DataType::Datetime(_, _) | DataType::Duration(_) => Ok(Wrap(
DataType::Datetime(_, _) | DataType::Duration(_) | DataType::Time => Ok(Wrap(
self.series
.mean_as_series()
.get(0)
Expand All @@ -77,7 +77,7 @@ impl PySeries {
.map_err(PyPolarsErr::from)?,
)
.into_py(py)),
DataType::Datetime(_, _) | DataType::Duration(_) => Ok(Wrap(
DataType::Datetime(_, _) | DataType::Duration(_) | DataType::Time => Ok(Wrap(
self.series
.median_as_series()
.map_err(PyPolarsErr::from)?
Expand Down
153 changes: 124 additions & 29 deletions py-polars/tests/unit/namespaces/test_datetime.py
Original file line number Diff line number Diff line change
Expand Up @@ -982,6 +982,9 @@ def test_weekday(time_unit: TimeUnit) -> None:
([timedelta(days=1)], timedelta(days=1)),
([timedelta(days=1), timedelta(days=2), timedelta(days=3)], timedelta(days=2)),
([timedelta(days=1), timedelta(days=2), timedelta(days=15)], timedelta(days=2)),
([time(hour=1)], time(hour=1)),
([time(hour=1), time(hour=2), time(hour=3)], time(hour=2)),
([time(hour=1), time(hour=2), time(hour=15)], time(hour=2)),
],
ids=[
"empty",
Expand All @@ -995,6 +998,9 @@ def test_weekday(time_unit: TimeUnit) -> None:
"single_dur",
"spread_even_dur",
"spread_skewed_dur",
"single_time",
"spread_even_time",
"spread_skewed_time",
mcrumiller marked this conversation as resolved.
Show resolved Hide resolved
],
)
def test_median(
Expand All @@ -1003,7 +1009,7 @@ def test_median(
s = pl.Series(values)
assert s.dt.median() == expected_median

if s.dtype == pl.Datetime:
if s.dtype in (pl.Datetime, pl.Duration, pl.Time):
assert s.median() == expected_median


Expand All @@ -1027,6 +1033,9 @@ def test_median(
([timedelta(days=1)], timedelta(days=1)),
([timedelta(days=1), timedelta(days=2), timedelta(days=3)], timedelta(days=2)),
([timedelta(days=1), timedelta(days=2), timedelta(days=15)], timedelta(days=6)),
([time(hour=1)], time(hour=1)),
([time(hour=1), time(hour=2), time(hour=3)], time(hour=2)),
([time(hour=1), time(hour=2), time(hour=15)], time(hour=6)),
],
ids=[
"empty",
Expand All @@ -1040,6 +1049,9 @@ def test_median(
"single_duration",
"spread_even_duration",
"spread_skewed_duration",
"single_time",
"spread_even_time",
"spread_skewed_time",
mcrumiller marked this conversation as resolved.
Show resolved Hide resolved
],
)
def test_mean(
Expand All @@ -1048,62 +1060,91 @@ def test_mean(
s = pl.Series(values)
assert s.dt.mean() == expected_mean

if s.dtype == pl.Datetime:
if s.dtype in (pl.Datetime, pl.Duration, pl.Time):
assert s.mean() == expected_mean


@pytest.mark.parametrize(
("values", "expected_mean"),
[
([None], None),
(
[datetime(2022, 1, 1), datetime(2022, 1, 2), datetime(2024, 5, 15)],
datetime(2022, 10, 16, 16, 0, 0),
),
],
ids=["spread_skewed_dt"],
ids=["None_dt", "spread_skewed_dt"],
)
def test_datetime_mean_with_tu(values: list[datetime], expected_mean: datetime) -> None:
assert pl.Series(values, dtype=pl.Duration("ms")).mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration("ms")).dt.mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration("us")).mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration("us")).dt.mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration("ns")).mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration("ns")).dt.mean() == expected_mean
@pytest.mark.parametrize("time_unit", ["ms", "us", "ns"])
def test_datetime_mean_with_tu(
values: list[datetime], expected_mean: datetime, time_unit: TimeUnit
) -> None:
assert pl.Series(values, dtype=pl.Duration(time_unit)).mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration(time_unit)).dt.mean() == expected_mean


@pytest.mark.parametrize(
("values", "expected_median"),
[
([None], None),
(
[datetime(2022, 1, 1), datetime(2022, 1, 2), datetime(2024, 5, 15)],
datetime(2022, 1, 2),
),
],
ids=["None_dt", "spread_skewed_dt"],
)
@pytest.mark.parametrize("time_unit", ["ms", "us", "ns"])
def test_datetime_median_with_tu(
values: list[datetime], expected_median: datetime, time_unit: TimeUnit
) -> None:
assert pl.Series(values, dtype=pl.Duration(time_unit)).median() == expected_median
assert (
pl.Series(values, dtype=pl.Duration(time_unit)).dt.median() == expected_median
)


@pytest.mark.parametrize(
("values", "expected_mean"),
[([timedelta(days=1), timedelta(days=2), timedelta(days=15)], timedelta(days=6))],
ids=["spread_skewed_dur"],
[
([None], None),
(
[timedelta(days=1), timedelta(days=2), timedelta(days=15)],
timedelta(days=6),
),
],
ids=["None_dur", "spread_skewed_dur"],
)
@pytest.mark.parametrize("time_unit", ["ms", "us", "ns"])
def test_duration_mean_with_tu(
values: list[timedelta], expected_mean: timedelta
values: list[timedelta], expected_mean: timedelta, time_unit: TimeUnit
) -> None:
assert pl.Series(values, dtype=pl.Duration("ms")).mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration("ms")).dt.mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration("us")).mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration("us")).dt.mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration("ns")).mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration("ns")).dt.mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration(time_unit)).mean() == expected_mean
assert pl.Series(values, dtype=pl.Duration(time_unit)).dt.mean() == expected_mean


@pytest.mark.parametrize(
("values", "expected_median"),
[([timedelta(days=1), timedelta(days=2), timedelta(days=15)], timedelta(days=2))],
ids=["spread_skewed_dur"],
[
([None], None),
(
[timedelta(days=1), timedelta(days=2), timedelta(days=15)],
timedelta(days=2),
),
],
ids=["None_dur", "spread_skewed_dur"],
)
@pytest.mark.parametrize("time_unit", ["ms", "us", "ns"])
def test_duration_median_with_tu(
values: list[timedelta], expected_median: timedelta
values: list[timedelta], expected_median: timedelta, time_unit: TimeUnit
) -> None:
assert pl.Series(values, dtype=pl.Duration("ms")).median() == expected_median
assert pl.Series(values, dtype=pl.Duration("ms")).dt.median() == expected_median
assert pl.Series(values, dtype=pl.Duration("us")).median() == expected_median
assert pl.Series(values, dtype=pl.Duration("us")).dt.median() == expected_median
assert pl.Series(values, dtype=pl.Duration("ns")).median() == expected_median
assert pl.Series(values, dtype=pl.Duration("ns")).dt.median() == expected_median
assert pl.Series(values, dtype=pl.Duration(time_unit)).median() == expected_median
assert (
pl.Series(values, dtype=pl.Duration(time_unit)).dt.median() == expected_median
)


def test_agg_expr() -> None:
def test_agg_mean_expr() -> None:
df = pl.DataFrame(
{
"datetime_ms": pl.Series(
Expand All @@ -1130,6 +1171,10 @@ def test_agg_expr() -> None:
[timedelta(days=1), timedelta(days=2), timedelta(days=4)],
dtype=pl.Duration("ns"),
),
"time": pl.Series(
[time(hour=1), time(hour=2), time(hour=4)],
dtype=pl.Time,
),
}
)

Expand All @@ -1153,7 +1198,57 @@ def test_agg_expr() -> None:
"duration_ns": pl.Series(
[timedelta(days=2, hours=8)], dtype=pl.Duration("ns")
),
"time": pl.Series([time(hour=2, minute=20)], dtype=pl.Time),
}
)

assert_frame_equal(df.select(pl.all().mean()), expected)


def test_agg_median_expr() -> None:
df = pl.DataFrame(
{
"datetime_ms": pl.Series(
[datetime(2023, 1, 1), datetime(2023, 1, 2), datetime(2023, 1, 4)],
dtype=pl.Datetime("ms"),
),
"datetime_us": pl.Series(
[datetime(2023, 1, 1), datetime(2023, 1, 2), datetime(2023, 1, 4)],
dtype=pl.Datetime("us"),
),
"datetime_ns": pl.Series(
[datetime(2023, 1, 1), datetime(2023, 1, 2), datetime(2023, 1, 4)],
dtype=pl.Datetime("ns"),
),
"duration_ms": pl.Series(
[timedelta(days=1), timedelta(days=2), timedelta(days=4)],
dtype=pl.Duration("ms"),
),
"duration_us": pl.Series(
[timedelta(days=1), timedelta(days=2), timedelta(days=4)],
dtype=pl.Duration("us"),
),
"duration_ns": pl.Series(
[timedelta(days=1), timedelta(days=2), timedelta(days=4)],
dtype=pl.Duration("ns"),
),
"time": pl.Series(
[time(hour=1), time(hour=2), time(hour=4)],
dtype=pl.Time,
),
}
)

expected = pl.DataFrame(
{
"datetime_ms": pl.Series([datetime(2023, 1, 2)], dtype=pl.Datetime("ms")),
"datetime_us": pl.Series([datetime(2023, 1, 2)], dtype=pl.Datetime("us")),
"datetime_ns": pl.Series([datetime(2023, 1, 2)], dtype=pl.Datetime("ns")),
"duration_ms": pl.Series([timedelta(days=2)], dtype=pl.Duration("ms")),
"duration_us": pl.Series([timedelta(days=2)], dtype=pl.Duration("us")),
"duration_ns": pl.Series([timedelta(days=2)], dtype=pl.Duration("ns")),
"time": pl.Series([time(hour=2)], dtype=pl.Time),
}
)

assert_frame_equal(df.select(pl.all().median()), expected)
Loading