Check-COVID: Fact-Checking COVID-19 News Claims with Scientific Evidence
Accpeted as ACL2023 Findings Arxiv
We present a new fact-checking benchmark, Check-COVID, that requires systems to verify claims about COVID-19 from news using evidence from scientific articles. This approach to fact-checking is particularly challenging as it requires checking internet text written in everyday language against evidence from journal articles written in formal academic language. Check-COVID contains 1,504 expert-annotated news claims about the coronavirus paired with sentence-level evidence from scientific journal articles and veracity labels. It includes both extracted (journalist-written) and composed (annotator-written) claims. Experiments using both a fact-checking specific system (which achieved F1 scores of 76.99 and 69.90 respectively) and GPT-3.5 on this task reveal the difficulty of automatically fact-checking both claim types and the importance of in-domain data for good performance.
All data is included in the Check-COVID
directory
-
variants_for_experiments
directory includs variatns and subsets of the dataset that were used for experiments in the paper -
abstracts
directory includes abstracts used to evaluate the rationale and full pipeline modules
Disclaimer: Training, inference and eval code is built off of the code from SciFact.
python3 fact-checking-system/training/rationale_selection/transformer_covid19_uda.py \
--corpus ../CheckCOVID/corpus.json \
--claim-train ../CheckCOVID/covidCheck_train_writtenAuth_2_classes.json \
--claim-dev ../CheckCOVID/covidCheck_dev_writtenAuth_2_classes.json \
--model models/rationale_roberta_large_fever \ # path to base rationale FEVER model
--dest rationale_models/fever_covid_extracted_composed \
--batch-size-gpu 16 --seed 42
- python3 fact-checking-system/training/label_prediction/transformer_covid19_uda.py \
--corpus ../CheckCOVID/corpus.json \
--train ../CheckCOVID/covidCheck_train_auth.json \
--dev ../CheckCOVID/covidCheck_dev_auth.json \
--model <path to base label FEVER/SciFact model> \
--dest label_models/fever_scifact_covid_extracted \
--batch-size-gpu 16 --seed 42 \
--batch-size-accumulated 16
python -m fact-checking-system.inference.rationale_selection.transformer_covid19 \
--corpus ../CheckCOVID/corpus.json \
--dataset ../CheckCOVID/covidCheck_dev_auth_2_classes.json \
--abstract-retrieval abstracts/abstract_retrieval_oracle_dev_auth_2_classes.jsonl \ # path to abstracts
--model rationale_models/fever_scifact_covid_extracted/epoch-6-f1-7990 \ # path to trained model
--output-flex fever_scifact_covid_extracted.jsonl
python3 fact-checking-system/inference/label_prediction/transformer_covid19.py \
--corpus ../CheckCOVID/corpus.json \
--dataset ../CheckCOVID/covidCheck_dev_auth.json \
--rationale-selection rationale_roberta_fever_covid19_finetuned_oracle_true_auth.jsonl \ # path to oracle rationales or predicted rationales
--mode claim_and_rationale
--model label_models/fever_covid_extracted \ # path to trained model
--output fever_covid_extracted.jsonl
python3 fact-checking-system/evaluate/rationale_selection_covid19.py \
--dataset ../CheckCOVID/covidCheck_dev_auth_2_classes.json \
--rationale-intersection True \
--rationale-selection rationales/fever_scifact_covid_extracted.jsonl
python3 fact-checking-system/evaluate/rationale_selection_covid19.py \
--dataset ../CheckCOVID/covidCheck_dev_auth_2_classes.json \
--rationale-exact-match True \
--rationale-selection rationales/fever_scifact_covid_extracted.jsonl
python3 fact-checking-system/evaluate/rationale_selection_covid19.py \
--dataset ../CheckCOVID/covidCheck_dev_auth_2_classes.json \
--sentence-score-version global_recall \
--rationale-selection rationales/fever_scifact_covid_extracted.jsonl
python3 fact-checking-system/evaluate/rationale_selection_covid19.py \
--dataset ../CheckCOVID/covidCheck_dev_auth_2_classes.json \
--sentence-score-version standard \
--rationale-selection rationales/fever_scifact_covid_extracted.jsonl
- python3 fact-checking-system/evaluate/label_prediction_covid19.py \
--dataset ../COVID-check/covidCheck_dev.json \
--label-prediction ../scifact/paper_labels/covid_composed.jsonl