-
Notifications
You must be signed in to change notification settings - Fork 2.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Tool to generate a minimal representation of a device. (#30641)
* DeviceConformance: Factor out conformance checks This will let us use conformance as a pre-requisite in other tools. * Generates a minimal representation of a device This representation gives all the top level optional elements that are implemented on the device. Anything that DOES NOT appear in this representation is either mandatory or disallowed based on the elements represented here. * Fix linter * Restyled by isort * address review comments --------- Co-authored-by: Restyled.io <commits@restyled.io>
- Loading branch information
Showing
3 changed files
with
218 additions
and
56 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
# | ||
# Copyright (c) 2023 Project CHIP Authors | ||
# All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
from dataclasses import dataclass, field | ||
|
||
from chip.tlv import uint | ||
from conformance_support import ConformanceDecision | ||
from global_attribute_ids import GlobalAttributeIds | ||
from matter_testing_support import MatterBaseTest, async_test_body, default_matter_test_main | ||
from TC_DeviceConformance import DeviceConformanceTests | ||
|
||
|
||
@dataclass | ||
class ClusterMinimalElements: | ||
feature_masks: list[uint] = field(default_factory=list) | ||
attribute_ids: list[uint] = field(default_factory=list) | ||
# Only received commands are necessary - generated events are ALWAYS determined from accepted | ||
command_ids: list[uint] = field(default_factory=list) | ||
# TODO: need event support | ||
|
||
|
||
class MinimalRepresentationChecker(DeviceConformanceTests): | ||
def GenerateMinimals(self, ignore_in_progress: bool, is_ci: bool) -> dict[uint, dict[uint, ClusterMinimalElements]]: | ||
if not self.xml_clusters: | ||
self.setup_class_helper() | ||
|
||
success, _ = self.check_conformance(ignore_in_progress, is_ci) | ||
if not success: | ||
self.fail_current_test("Problems with conformance") | ||
|
||
# Now what we know the conformance is OK, we want to expose all the data model elements on the device | ||
# that are OPTIONAL given the other elements that are present. We can do this by assessing the conformance | ||
# again only on the elements we have. Because we've already run the full conformance checkers, we can rely | ||
# on the optional response really meaning optional. | ||
# TODO: do we also want to record the optional stuff that's NOT implemented? | ||
# endpoint -> list of clusters by id | ||
representation: dict[uint, dict[uint, ClusterMinimalElements]] = {} | ||
for endpoint_id, endpoint in self.endpoints_tlv.items(): | ||
representation[endpoint_id] = {} | ||
for cluster_id, cluster in endpoint.items(): | ||
minimal = ClusterMinimalElements() | ||
if cluster_id not in self.xml_clusters.keys(): | ||
continue | ||
|
||
feature_map = cluster[GlobalAttributeIds.FEATURE_MAP_ID] | ||
attribute_list = cluster[GlobalAttributeIds.ATTRIBUTE_LIST_ID] | ||
all_command_list = cluster[GlobalAttributeIds.ACCEPTED_COMMAND_LIST_ID] + \ | ||
cluster[GlobalAttributeIds.GENERATED_COMMAND_LIST_ID] | ||
accepted_command_list = cluster[GlobalAttributeIds.ACCEPTED_COMMAND_LIST_ID] | ||
|
||
# All optional features | ||
feature_masks = [1 << i for i in range(32) if feature_map & (1 << i)] | ||
for f in feature_masks: | ||
xml_feature = self.xml_clusters[cluster_id].features[f] | ||
conformance_decision = xml_feature.conformance(feature_map, attribute_list, all_command_list) | ||
if conformance_decision == ConformanceDecision.OPTIONAL: | ||
minimal.feature_masks.append(f) | ||
|
||
# All optional attributes | ||
for attribute_id, attribute in cluster.items(): | ||
if attribute_id not in self.xml_clusters[cluster_id].attributes.keys(): | ||
if attribute_id > 0xFFFF: | ||
# MEI | ||
minimal.attribute_ids.append(attribute_id) | ||
continue | ||
xml_attribute = self.xml_clusters[cluster_id].attributes[attribute_id] | ||
conformance_decision = xml_attribute.conformance(feature_map, attribute_list, all_command_list) | ||
if conformance_decision == ConformanceDecision.OPTIONAL: | ||
minimal.attribute_ids.append(attribute_id) | ||
|
||
# All optional commands | ||
for command_id in accepted_command_list: | ||
if command_id not in self.xml_clusters[cluster_id].accepted_commands: | ||
if command_id > 0xFFFF: | ||
# MEI | ||
minimal.attribute_ids.append(command_id) | ||
continue | ||
xml_command = self.xml_clusters[cluster_id].accepted_commands[command_id] | ||
conformance_decision = xml_command.conformance(feature_map, attribute_list, all_command_list) | ||
if conformance_decision == ConformanceDecision.OPTIONAL: | ||
minimal.command_ids.append(command_id) | ||
|
||
representation[endpoint_id][cluster_id] = minimal | ||
|
||
return representation | ||
|
||
def PrettyPrintRepresentation(self, representation: dict[uint, dict[uint, ClusterMinimalElements]]) -> None: | ||
for endpoint_id, cluster_list in representation.items(): | ||
print(f'Endpoint: {endpoint_id}') | ||
for cluster_id, minimals in cluster_list.items(): | ||
name = self.xml_clusters[cluster_id].name | ||
print(f' Cluster {cluster_id:04x} - {name}') | ||
print(' Features:') | ||
for feature in minimals.feature_masks: | ||
code = self.xml_clusters[cluster_id].features[feature].code | ||
print(f' {feature:02x}: {code}') | ||
print(' Attributes:') | ||
for attribute in minimals.attribute_ids: | ||
name = self.xml_clusters[cluster_id].attributes[attribute].name | ||
print(f' {attribute:02x}: {name}') | ||
print(' Commands:') | ||
for command in minimals.command_ids: | ||
name = self.xml_clusters[cluster_id].accepted_commands[command].name | ||
print(f' {command:02x}: {name}') | ||
|
||
|
||
# Helper for running this against a test device through the python test framework | ||
class MinimalRunner(MatterBaseTest, MinimalRepresentationChecker): | ||
@async_test_body | ||
async def setup_class(self): | ||
super().setup_class() | ||
await self.setup_class_helper() | ||
|
||
def test_MinimalRepresentation(self): | ||
# Before we can generate a minimal representation, we need to make sure that the device is conformant. | ||
# Otherwise, the values we extract aren't fully informative. | ||
ignore_in_progress = self.user_params.get("ignore_in_progress", False) | ||
is_ci = self.check_pics('PICS_SDK_CI_ONLY') | ||
representation = self.GenerateMinimals(ignore_in_progress, is_ci) | ||
print(type(representation[0])) | ||
self.PrettyPrintRepresentation(representation) | ||
|
||
|
||
if __name__ == "__main__": | ||
default_matter_test_main() |
Oops, something went wrong.