Skip to content

proteus-h2020/proteus-solma

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

81 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PROTEUS SOLMA Library

Solma is a scalable online machine learning algorithms (including classification, clustering, regression, ensemble algorithms, graph oriented algorithms, linear algebra operations, and anomaly and novelty detection) implemented on top of Apache Flink using the hybrid processing capabilities.

Build Status

Usage

  • Clone proteus-engine [1] (if already cloned, execute git pull origin proteus-dev)
  • From commandline go to above directory and execute mvn clean install
  • Clone SOLMA library [2] (if already cloned, execute git pull origin master)
  • Install Flink Parameter Server (execute ./script/build-flink-ps.sh )
  • Move to above directory and execute mvn clean install
  • To use SOLMA library, create Maven project (in your favorite IDE)
  • You can use sample pom file [4]. Please change project specific fields like <mainClass> to related value
  • For simple examples, please look at unit tests.
  • To generate jar with a given project, go to related directory (with command line) and execute mvn clean install
  • Use jar file under ./target/ and use [3] to exetuce jar with flink

[1] https://github.com/proteus-h2020/proteus-engine

[2] https://github.com/proteus-h2020/SOLMA

[3] https://ci.apache.org/projects/flink/flink-docs-release-1.2/setup/cli.html

[4]

    <dependencies>
        <dependency>
            <groupId>eu.proteus</groupId>
            <artifactId>proteus-solma_2.10</artifactId>
            <version>0.1-SNAPSHOT</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.10</artifactId>
            <version>1.3-SNAPSHOT</version>
            <scope>compile</scope>
            <exclusions>
                <exclusion>
                    <groupId>log4j</groupId>
                    <artifactId>*</artifactId>
                </exclusion>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-log4j12</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <configuration>
                    <recompileMode>incremental</recompileMode>
                </configuration>
                <executions>
                    <execution>
                        <id>scala-compile-first</id>
                        <phase>process-resources</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>compile</goal>
                        </goals>
                    </execution>
                    <execution>
                        <id>scala-test-compile</id>
                        <phase>process-test-resources</phase>
                        <goals>
                            <goal>add-source</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>2.4</version>
                <configuration>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                    <archive>
                        <manifest>
                            <mainClass>solma.TestSolma</mainClass>
                        </manifest>
                    </archive>
                </configuration>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-dependency-plugin</artifactId>
                <executions>
                    <execution>
                        <id>copy-dependencies</id>
                        <phase>package</phase>
                        <goals>
                            <goal>copy-dependencies</goal>
                        </goals>
                        <configuration>
                            <useBaseVersion>false</useBaseVersion>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

Algorithms

SAX-SVM

The SAX-VSM algorithm is implemented as two independent algorithms in SOLMA: SAX and SAXDictionary. Both algorithms can be used together following the SAX-VSM implementation, or they can be used independently.

References for this algorithm can be found at:

Senin, Pavel, and Sergey Malinchik. "Sax-vsm: Interpretable time series
classification using SAX and vector space model."
2013 IEEE 13th International Conference on Data Mining (ICDM),
IEEE, 2013.

SAX

The SAX algorithm provides a method to transform a DataStream[Double] into a set of words supporting PAA transformation.

To train the SAX and use it to transform a time series use the following approach:

 // Obtain the training and evaluation datasets.
 val trainingDataSet : DataSet[Double] = env.fromCollection(...)
 val evalDataSet : DataStream[Double] = streamingEnv.fromCollection(...)

 // Define the SAX algorithm
 val sax = new SAX().setPAAFragmentSize(2).setWordSize(2)
 // Fit the SAX
 sax.fit(trainingDataSet)
 // Transform the datastream
 val transformed = sax.transform(evalDataSet)

The algorithm accepts the following parameters:

  • PAAFragmentSize: It indicates the number of elements that will be averaged during the PAA process.
  • WordSize: It determines the size of the words to be used
  • AlphabetSize: It determines the size of the alphabet in terms of number of symbols

SAXDictionary

// Dataset 1 corresponds to class 1
val dataset1 : DataSet[String] = env.fromCollection(...)
val toFit1 = dataset1.map((_, 1))
// Dataset 2 corresponds to class 2
val dataset2 : DataSet[String] = env.fromCollection(trainingData2)
val toFit2 = dataset2.map((_, 2))
// Build the SAX dictionary
val saxDictionary = new SAXDictionary()
// Fit the dictionary
saxDictionary.fit(toFit1)
saxDictionary.fit(toFit2)
// Evaluation datastream
val evalDataSet : DataStream[String] = streamingEnv.fromCollection(...)
// Determine the number of words in the window
val evalDictionary = saxDictionary.setNumberWords(3)
val predictions = evalDictionary.predict[String, SAXPrediction](evalDataSet)

The algorithm supports the following parameters:

  • NumberWords: It determines the number of words that need to appear in a window to compute the prediction.

SAX + SAXDictionary

To use both algorithms:

  1. Select a training set from the signal
  2. Use the training set to fit the SAX algorithm
  3. Transform the training set to obtain the words and use that to fit the SAXDictionary
  4. Select the evaluation stream
  5. Connect the evaluation stream to pass first through the SAX algorithm and then through the SAXDictionary to obtain the predictions.

References

The PROTEUS SOLMA library contains extra datasets that are used for testing purposes.

Nursey dataset

The dataset is downloaded from UCI machine learning repository: Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. Nursery dataset has three classes. To simulate the binary classification, we use the label "recommended" (to be class 1) versus the others (to be class -1).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages