Skip to content

punkrockpolly/machine-learning-course

Repository files navigation

Stanford Machine Learning

taught by Andrew Ng

Syllabus

  1. Introduction to Machine Learning. Univariate linear regression. (Optional: Linear algebra review.)
  2. Multivariate linear regression. Practical aspects of implementation. Octave tutorial.
  3. Logistic regression, One-vs-all classification, Regularization.
  4. Neural Networks.
  5. Practical advice for applying learning algorithms: How to develop, debugging, feature/model design, setting up experiment structure.
  6. Support Vector Machines (SVMs) and the intuition behind them.
  7. Unsupervised learning: clustering and dimensionality reduction.
  8. Anomaly detection.
  9. Recommender systems.
  10. Large-scale machine learning. An example of an application of machine learning.

About

Coursera: Machine Learning programming exercise

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published