Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

support for additional scipy nd interpolants #9599

Merged
merged 26 commits into from
Nov 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
26 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions doc/user-guide/interpolation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -132,10 +132,11 @@ It is now possible to safely compute the difference ``other - interpolated``.
Interpolation methods
---------------------

We use :py:class:`scipy.interpolate.interp1d` for 1-dimensional interpolation.
We use either :py:class:`scipy.interpolate.interp1d` or special interpolants from
:py:class:`scipy.interpolate` for 1-dimensional interpolation (see :py:meth:`~xarray.Dataset.interp`).
For multi-dimensional interpolation, an attempt is first made to decompose the
interpolation in a series of 1-dimensional interpolations, in which case
:py:class:`scipy.interpolate.interp1d` is used. If a decomposition cannot be
the relevant 1-dimensional interpolator is used. If a decomposition cannot be
made (e.g. with advanced interpolation), :py:func:`scipy.interpolate.interpn` is
used.

Expand Down
131 changes: 80 additions & 51 deletions xarray/core/dataarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -2228,16 +2228,13 @@ def interp(
kwargs: Mapping[str, Any] | None = None,
**coords_kwargs: Any,
) -> Self:
"""Interpolate a DataArray onto new coordinates
"""
Interpolate a DataArray onto new coordinates.

Performs univariate or multivariate interpolation of a Dataset onto new coordinates,
utilizing either NumPy or SciPy interpolation routines.

Performs univariate or multivariate interpolation of a DataArray onto
new coordinates using scipy's interpolation routines. If interpolating
along an existing dimension, either :py:class:`scipy.interpolate.interp1d`
or a 1-dimensional scipy interpolator (e.g. :py:class:`scipy.interpolate.KroghInterpolator`)
is called. When interpolating along multiple existing dimensions, an
attempt is made to decompose the interpolation into multiple
1-dimensional interpolations. If this is possible, the 1-dimensional interpolator is called.
Otherwise, :py:func:`scipy.interpolate.interpn` is called.
Out-of-range values are filled with NaN, unless specified otherwise via `kwargs` to the numpy/scipy interpolant.

Parameters
----------
Expand All @@ -2246,16 +2243,9 @@ def interp(
New coordinate can be a scalar, array-like or DataArray.
If DataArrays are passed as new coordinates, their dimensions are
used for the broadcasting. Missing values are skipped.
method : {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "polynomial"}, default: "linear"
The method used to interpolate. The method should be supported by
the scipy interpolator:

- ``interp1d``: {"linear", "nearest", "zero", "slinear",
"quadratic", "cubic", "polynomial"}
- ``interpn``: {"linear", "nearest"}

If ``"polynomial"`` is passed, the ``order`` keyword argument must
also be provided.
method : { "linear", "nearest", "zero", "slinear", "quadratic", "cubic", \
"quintic", "polynomial", "pchip", "barycentric", "krogh", "akima", "makima" }
Interpolation method to use (see descriptions above).
assume_sorted : bool, default: False
If False, values of x can be in any order and they are sorted
first. If True, x has to be an array of monotonically increasing
Expand All @@ -2275,12 +2265,37 @@ def interp(

Notes
-----
scipy is required.
- SciPy is required for certain interpolation methods.
- When interpolating along multiple dimensions with methods `linear` and `nearest`,
the process attempts to decompose the interpolation into independent interpolations
along one dimension at a time.
- The specific interpolation method and dimensionality determine which
interpolant is used:

1. **Interpolation along one dimension of 1D data (`method='linear'`)**
- Uses :py:func:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.

2. **Interpolation along one dimension of N-dimensional data (N ≥ 1)**
- Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
use :py:func:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:func:`numpy.interp`
(as in the case of `method='linear'` for 1D data).
- If `method='polynomial'`, the `order` keyword argument must also be provided.

3. **Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)**
- Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
- `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
- `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
- `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
- `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
(`makima` is handled by passing the `makima` flag).

4. **Interpolation along multiple dimensions of multi-dimensional data**
- Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
"cubic", "quintic", "pchip"}.

See Also
--------
scipy.interpolate.interp1d
hollymandel marked this conversation as resolved.
Show resolved Hide resolved
scipy.interpolate.interpn
:mod:`scipy.interpolate`

:doc:`xarray-tutorial:fundamentals/02.2_manipulating_dimensions`
Tutorial material on manipulating data resolution using :py:func:`~xarray.DataArray.interp`
Expand Down Expand Up @@ -2376,43 +2391,67 @@ def interp_like(
"""Interpolate this object onto the coordinates of another object,
filling out of range values with NaN.

If interpolating along a single existing dimension,
:py:class:`scipy.interpolate.interp1d` is called. When interpolating
along multiple existing dimensions, an attempt is made to decompose the
interpolation into multiple 1-dimensional interpolations. If this is
possible, :py:class:`scipy.interpolate.interp1d` is called. Otherwise,
:py:func:`scipy.interpolate.interpn` is called.

Parameters
----------
other : Dataset or DataArray
Object with an 'indexes' attribute giving a mapping from dimension
names to an 1d array-like, which provides coordinates upon
which to index the variables in this dataset. Missing values are skipped.
method : {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "polynomial"}, default: "linear"
The method used to interpolate. The method should be supported by
the scipy interpolator:

- {"linear", "nearest", "zero", "slinear", "quadratic", "cubic",
"polynomial"} when ``interp1d`` is called.
- {"linear", "nearest"} when ``interpn`` is called.

If ``"polynomial"`` is passed, the ``order`` keyword argument must
also be provided.
method : { "linear", "nearest", "zero", "slinear", "quadratic", "cubic", \
"quintic", "polynomial", "pchip", "barycentric", "krogh", "akima", "makima" }
Interpolation method to use (see descriptions above).
assume_sorted : bool, default: False
If False, values of coordinates that are interpolated over can be
in any order and they are sorted first. If True, interpolated
coordinates are assumed to be an array of monotonically increasing
values.
kwargs : dict, optional
Additional keyword passed to scipy's interpolator.
Additional keyword arguments passed to the interpolant.

Returns
-------
interpolated : DataArray
Another dataarray by interpolating this dataarray's data along the
coordinates of the other object.

Notes
-----
- scipy is required.
- If the dataarray has object-type coordinates, reindex is used for these
coordinates instead of the interpolation.
- When interpolating along multiple dimensions with methods `linear` and `nearest`,
the process attempts to decompose the interpolation into independent interpolations
along one dimension at a time.
- The specific interpolation method and dimensionality determine which
interpolant is used:

1. **Interpolation along one dimension of 1D data (`method='linear'`)**
- Uses :py:func:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.

2. **Interpolation along one dimension of N-dimensional data (N ≥ 1)**
- Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
use :py:func:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:func:`numpy.interp`
(as in the case of `method='linear'` for 1D data).
- If `method='polynomial'`, the `order` keyword argument must also be provided.

3. **Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)**
- Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
- `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
- `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
- `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
- `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
(`makima` is handled by passing the `makima` flag).

4. **Interpolation along multiple dimensions of multi-dimensional data**
- Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
"cubic", "quintic", "pchip"}.

See Also
--------
:func:`DataArray.interp`
:func:`DataArray.reindex_like`
:mod:`scipy.interpolate`

Examples
--------
>>> data = np.arange(12).reshape(4, 3)
Expand Down Expand Up @@ -2468,18 +2507,8 @@ def interp_like(
Coordinates:
* x (x) int64 32B 10 20 30 40
* y (y) int64 24B 70 80 90

Notes
-----
scipy is required.
If the dataarray has object-type coordinates, reindex is used for these
coordinates instead of the interpolation.

See Also
--------
DataArray.interp
DataArray.reindex_like
"""

if self.dtype.kind not in "uifc":
raise TypeError(
f"interp only works for a numeric type array. Given {self.dtype}."
Expand Down
Loading
Loading