Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
rusty1s committed Sep 14, 2023
1 parent 0b27322 commit ae951b3
Showing 1 changed file with 7 additions and 7 deletions.
14 changes: 7 additions & 7 deletions torch_geometric/nn/conv/mixhop_conv.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,13 +18,13 @@ class MixHopConv(MessagePassing):
Neighborhood Mixing" <https://arxiv.org/abs/1905.00067>`_ paper
.. math::
\mathbf{X}^{\prime}={\Bigg\Vert}_{p\in P}{\left(\mathbf{\hat{D}}^{-1/2}
\mathbf{\hat{A}}\mathbf{\hat{D}}^{-1/2}\right)}^p\mathbf{X}\mathbf{\Theta},
\mathbf{X}^{\prime}={\Bigg\Vert}_{p\in P}
{\left( \mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}}
\mathbf{\hat{D}}^{-1/2} \right)}^p \mathbf{X} \mathbf{\Theta},
where :math:`\widehat{A}` denotes the symmetrically normalized adjacency
matrix with self-connections,
:math:`D_{ii} = \sum_{j=0} \widehat{A}_{ij}` its diagonal degree matrix,
:math:`W_j^{(i)}` denotes the trainable weight matrix of mixhop layers.
where :math:`\mathbf{\hat{A}} = \mathbf{A} + \mathbf{I}` denotes the
adjacency matrix with inserted self-loops and
:math:`\hat{D}_{ii} = \sum_{j=0} \hat{A}_{ij}` its diagonal degree matrix.
Args:
in_channels (int): Size of each input sample, or :obj:`-1` to derive
Expand All @@ -45,7 +45,7 @@ class MixHopConv(MessagePassing):
edge indices :math:`(2, |\mathcal{E}|)`,
edge weights :math:`(|\mathcal{E}|)` *(optional)*
- **output:**
node features :math:`(|\mathcal{V}|, F_{out})`
node features :math:`(|\mathcal{V}|, |P| \cdot F_{out})`
"""
def __init__(
self,
Expand Down

0 comments on commit ae951b3

Please sign in to comment.