Skip to content

Commit

Permalink
Add BreastInvasiveCarcinoma dataset (#7905)
Browse files Browse the repository at this point in the history
This is a dataset that was generated by integrating the breast cancer
(BRCA TCGA) dataset from the cBioPortal (cbioportal.org) and a
biological network for node connections from Pathway Commons
(www.pathwaycommons.org). The dataset contains the gene features of each
patient and the overall survival time (in months) of each patient, which
are the labels.

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Akihiro Nitta <nitta@akihironitta.com>
Co-authored-by: Matthias Fey <matthias.fey@tu-dortmund.de>
  • Loading branch information
4 people authored and JakubPietrakIntel committed Sep 27, 2023
1 parent a1dda76 commit f962189
Show file tree
Hide file tree
Showing 3 changed files with 107 additions and 0 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

### Added

- Added the `BrcaTcga` dataset ([#7905](https://github.com/pyg-team/pytorch_geometric/pull/7905))
- Added the `MyketDataset` ([#7959](https://github.com/pyg-team/pytorch_geometric/pull/7959))
- Added a multi-GPU `ogbn-papers100M` example ([#7921](https://github.com/pyg-team/pytorch_geometric/pull/7921))
- Added `group_argsort` implementation ([#7948](https://github.com/pyg-team/pytorch_geometric/pull/7948))
Expand Down
2 changes: 2 additions & 0 deletions torch_geometric/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@
from .jodie import JODIEDataset
from .wikidata import Wikidata5M
from .myket import MyketDataset
from .brca_tgca import BrcaTcga

from .dbp15k import DBP15K
from .aminer import AMiner
Expand Down Expand Up @@ -178,6 +179,7 @@
'JODIEDataset',
'Wikidata5M',
'MyketDataset',
'BrcaTcga',
]

hetero_datasets = [
Expand Down
104 changes: 104 additions & 0 deletions torch_geometric/datasets/brca_tgca.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
import os
import os.path as osp
import shutil
from typing import Callable, List, Optional

import numpy as np
import torch

from torch_geometric.data import (
Data,
InMemoryDataset,
download_url,
extract_zip,
)


class BrcaTcga(InMemoryDataset):
r"""The breast cancer (BRCA TCGA) dataset from the `cBioPortal
<https://www.cbioportal.org>`_ and the biological network for node
connections from `Pathway Commons <https://www.pathwaycommons.org>`_.
The dataset contains the gene features of 1,082 patients, and the overall
survival time (in months) of each patient as label.
Pre-processing and example model codes on how to use this dataset can be
found `here <https://github.com/cannin/pyg_pathway_commons_cbioportal>`_.
Args:
root (str): Root directory where the dataset should be saved.
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.Data` object and returns a transformed
version. The data object will be transformed before every access.
(default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.Data` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
pre_filter (callable, optional): A function that takes in an
:obj:`torch_geometric.data.Data` object and returns a boolean
value, indicating whether the data object should be included in the
final dataset. (default: :obj:`None`)
**STATS:**
.. list-table::
:widths: 10 10 10 10
:header-rows: 1
* - #graphs
- #nodes
- #edges
- #features
* - 1,082
- 9,288
- 271,771
- 1,082
"""
url = 'https://zenodo.org/record/8251328/files/brca_tcga.zip?download=1'

def __init__(
self,
root: str,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
pre_filter: Optional[Callable] = None,
):
super().__init__(root, transform, pre_transform, pre_filter)
self.load(self.processed_paths[0])

@property
def raw_file_names(self) -> List[str]:
return ['graph_idx.csv', 'graph_labels.csv', 'edge_index.pt']

@property
def processed_file_names(self) -> str:
return 'data.pt'

def download(self):
path = download_url(self.url, self.root)
extract_zip(path, self.root)
os.unlink(path)
shutil.rmtree(self.raw_dir)
os.rename(osp.join(self.root, 'brca_tcga'), self.raw_dir)

def process(self):
import pandas as pd

graph_feat = pd.read_csv(self.raw_paths[0], index_col=0).values
graph_feat = torch.from_numpy(graph_feat).to(torch.float)
graph_label = np.loadtxt(self.raw_paths[1], delimiter=',')
graph_label = torch.from_numpy(graph_label).to(torch.float)
edge_index = torch.load(self.raw_paths[2])

data_list = []
for x, y in zip(graph_feat, graph_label):
data = Data(x=x, edge_index=edge_index, y=y)

if self.pre_filter is not None and not self.pre_filter(data):
continue
if self.pre_transform is not None:
data = self.pre_transform(data)

data_list.append(data)

self.save(data_list, self.processed_paths[0])

0 comments on commit f962189

Please sign in to comment.