Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added the HM personalized fashion recommendation dataset #7515

Merged
merged 4 commits into from
Jun 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).

### Added

- Added the `HM` personalized fashion recommendation dataset ([#7515](https://github.com/pyg-team/pytorch_geometric/pull/7515))
- Added the `GraphMixer` model ([#7501](https://github.com/pyg-team/pytorch_geometric/pull/7501))
- Added the `disable_dynamic_shape` experimental flag ([#7246](https://github.com/pyg-team/pytorch_geometric/pull/7246))
- Added the option to override `use_segmm` selection in `HeteroLinear` ([#7474](https://github.com/pyg-team/pytorch_geometric/pull/7474))
Expand Down
2 changes: 2 additions & 0 deletions torch_geometric/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,7 @@
from .taobao import Taobao
from .igmc_dataset import IGMCDataset
from .amazon_book import AmazonBook
from .hm import HM

from .fake import FakeDataset, FakeHeteroDataset
from .sbm_dataset import StochasticBlockModelDataset
Expand Down Expand Up @@ -188,6 +189,7 @@
'Taobao',
'IGMCDataset',
'AmazonBook',
'HM',
]
synthetic_datasets = [
'FakeDataset',
Expand Down
162 changes: 162 additions & 0 deletions torch_geometric/datasets/hm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,162 @@
from typing import Callable, List, Optional

import torch

from torch_geometric.data import HeteroData, InMemoryDataset


class HM(InMemoryDataset):
r"""The heterogeneous H&M dataset from the `Kaggle H&M Personalized Fashion
Recommendations
<https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations>`_
challenge.
The task is to develop product recommendations based on data from previous
transactions, as well as from customer and product meta data.

Args:
root (str): Root directory where the dataset should be saved.
use_all_tables_as_node_types (bool, optional): If set to :obj:`True`,
will use the transaction table as a distinct node type.
(default: :obj:`False`)
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.HeteroData` object and returns a
transformed version. The data object will be transformed before
every access. (default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.HeteroData` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
"""
url = ('https://www.kaggle.com/competitions/'
'h-and-m-personalized-fashion-recommendations/data')

def __init__(
self,
root: str,
use_all_tables_as_node_types: bool = False,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
):
self.use_all_tables_as_node_types = use_all_tables_as_node_types
super().__init__(root, transform, pre_transform)
self.load(self.processed_paths[0], data_cls=HeteroData)

@property
def raw_file_names(self) -> List[str]:
return [
'customers.csv.zip', 'articles.csv.zip',
'transactions_train.csv.zip'
]

@property
def processed_file_names(self) -> str:
if self.use_all_tables_as_node_types:
return 'data.pt'
else:
return 'data_merged.pt'

def download(self):
raise RuntimeError(
f"Dataset not found. Please download {self.raw_file_names} from "
f"'{self.url}' and move it to '{self.raw_dir}'")

def process(self):
import pandas as pd

data = HeteroData()

# Process customer data ###############################################
df = pd.read_csv(self.raw_paths[0], index_col='customer_id')
customer_map = {idx: i for i, idx in enumerate(df.index)}

xs = []
for name in [
'Active', 'FN', 'club_member_status', 'fashion_news_frequency'
]:
x = pd.get_dummies(df[name]).values
xs.append(torch.from_numpy(x).to(torch.float))

x = torch.from_numpy(df['age'].values).to(torch.float).view(-1, 1)
x = x.nan_to_num(nan=x.nanmean())
xs.append(x / x.max())

data['customer'].x = torch.cat(xs, dim=-1)

# Process article data ################################################
df = pd.read_csv(self.raw_paths[1], index_col='article_id')
article_map = {idx: i for i, idx in enumerate(df.index)}

xs = []
for name in [ # We drop a few columns here that are high cardinality.
# 'product_code', # Drop.
# 'prod_name', # Drop.
'product_type_no',
'product_type_name',
'product_group_name',
'graphical_appearance_no',
'graphical_appearance_name',
'colour_group_code',
'colour_group_name',
'perceived_colour_value_id',
'perceived_colour_value_name',
'perceived_colour_master_id',
'perceived_colour_master_name',
# 'department_no', # Drop.
# 'department_name', # Drop.
'index_code',
'index_name',
'index_group_no',
'index_group_name',
'section_no',
'section_name',
'garment_group_no',
'garment_group_name',
# 'detail_desc', # Drop.
]:
x = pd.get_dummies(df[name]).values
xs.append(torch.from_numpy(x).to(torch.float))

data['article'].x = torch.cat(xs, dim=-1)

# Process transaction data ############################################
df = pd.read_csv(self.raw_paths[2], parse_dates=['t_dat'])

x1 = pd.get_dummies(df['sales_channel_id']).values
x1 = torch.from_numpy(x1).to(torch.float)
x2 = torch.from_numpy(df['price'].values).to(torch.float).view(-1, 1)
x = torch.cat([x1, x2], dim=-1)

time = torch.from_numpy(df['t_dat'].values.astype(int))
time = time // (60 * 60 * 24 * 10**9) # Convert nanoseconds to days.

src = torch.tensor([customer_map[idx] for idx in df['customer_id']])
dst = torch.tensor([article_map[idx] for idx in df['article_id']])

if self.use_all_tables_as_node_types:
data['transaction'].x = x
data['transaction'].time = time

edge_index = torch.stack([src, torch.arange(len(df))], dim=0)
data['customer', 'to', 'transaction'].edge_index = edge_index
edge_index = edge_index.flip([0])
data['transaction', 'rev_to', 'customer'].edge_index = edge_index

edge_index = torch.stack([dst, torch.arange(len(df))], dim=0)
data['article', 'to', 'transaction'].edge_index = edge_index
edge_index = edge_index.flip([0])
data['transaction', 'rev_to', 'article'].edge_index = edge_index
else:
edge_index = torch.stack([src, dst], dim=0)
data['customer', 'to', 'article'].edge_index = edge_index
data['customer', 'to', 'article'].time = time
data['customer', 'to', 'article'].edge_attr = x

edge_index = edge_index.flip([0])
data['article', 'rev_to', 'customer'].edge_index = edge_index
data['article', 'rev_to', 'customer'].time = time
data['article', 'rev_to', 'customer'].edge_attr = x

if self.pre_transform is not None:
data = self.pre_transform(data)

self.save([data], self.processed_paths[0])
11 changes: 7 additions & 4 deletions torch_geometric/datasets/movie_lens.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,12 +33,15 @@ class MovieLens(InMemoryDataset):
features. The model comes from the`Huggingface SentenceTransformer
<https://huggingface.co/sentence-transformers>`_.
"""

url = 'https://files.grouplens.org/datasets/movielens/ml-latest-small.zip'

def __init__(self, root, transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
model_name: Optional[str] = "all-MiniLM-L6-v2"):
def __init__(
self,
root: str,
transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None,
model_name: Optional[str] = 'all-MiniLM-L6-v2',
):
self.model_name = model_name
super().__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
Expand Down