-
Notifications
You must be signed in to change notification settings - Fork 177
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Summary: This commit adds support for QAT, where linear layers are fake quantized with int8 per token dynamic activations (8da) and int4 grouped per channel weights (4w). This initial implementation uses the same module swap approach as 8da4w PTQ for simplicity and code reuse. In the future, we may wish to consider migrating both flows to use tensor subclasses for better composability with other PyTorch features. Test Plan: python test/quantization/test_qat.py -k test_fake_quantize_per_channel_group python test/quantization/test_qat.py -k test_fake_quantize_per_token python test/quantization/test_qat.py -k test_qat_8da4w_linear python test/quantization/test_qat.py -k test_qat_8da4w_quantizer Reviewers: jerryzh168, cpuhrsch, HDCharles Subscribers: jerryzh168, cpuhrsch, HDCharles, supriyar Tasks: #86
- Loading branch information
1 parent
b9beaf3
commit 5c9269c
Showing
3 changed files
with
467 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
|
||
# This source code is licensed under the license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
# mypy: ignore-errors | ||
# This test takes a long time to run | ||
|
||
import copy | ||
import unittest | ||
|
||
import torch | ||
from torch.ao.quantization.fx._decomposed import quantized_decomposed_lib # noqa: F401 | ||
from torchao.quantization._prototype.qat import ( | ||
_choose_qparams_per_token_asymmetric, | ||
fake_quantize_per_channel_group, | ||
fake_quantize_per_token, | ||
Int8DynActInt4WeightQATLinear, | ||
Int8DynActInt4WeightQATQuantizer, | ||
) | ||
from torchao.quantization.quant_primitives import ( | ||
get_group_qparams_symmetric, | ||
group_quantize_tensor_symmetric, | ||
per_token_dynamic_quant, | ||
) | ||
from torchao.quantization.utils import ( | ||
TORCH_VERSION_AFTER_2_3, | ||
) | ||
from torchao.quantization.GPTQ import ( | ||
Int8DynActInt4WeightLinear, | ||
Int8DynActInt4WeightQuantizer, | ||
) | ||
|
||
|
||
# TODO: put this in a common test utils file | ||
class M(torch.nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
self.linear1 = torch.nn.Linear(64, 32, bias=False).to(torch.float) | ||
self.linear2 = torch.nn.Linear(32, 64, bias=False).to(torch.float) | ||
|
||
def example_inputs(self): | ||
return (torch.randn(1, 64).to(torch.float),) | ||
|
||
def forward(self, x): | ||
x = self.linear1(x) | ||
x = self.linear2(x) | ||
return x | ||
|
||
|
||
class TestQATQuantPrimitives(unittest.TestCase): | ||
SEED = 123 | ||
|
||
def _get_qmin_qmax(self, n_bit: int): | ||
qmin = -(2 ** (n_bit - 1)) | ||
qmax = 2 ** (n_bit - 1) - 1 | ||
return (qmin, qmax) | ||
|
||
@unittest.skipIf(not TORCH_VERSION_AFTER_2_3, "skipping when torch verion is 2.3 or lower") | ||
def test_fake_quantize_per_channel_group(self): | ||
n_bit = 4 | ||
(qmin, qmax) = self._get_qmin_qmax(n_bit) | ||
group_size = 128 | ||
|
||
torch.manual_seed(self.SEED) | ||
x = torch.randn(100, 256).requires_grad_() | ||
(s, zp) = get_group_qparams_symmetric(x, n_bit, group_size) | ||
x2 = copy.deepcopy(x) | ||
|
||
# fake quant op | ||
out = fake_quantize_per_channel_group( | ||
x, s, zp, qmin, qmax, group_size, | ||
) | ||
out.sum().backward() | ||
|
||
# compare against PTQ ops | ||
out_ptq = torch.ops.quantized_decomposed.quantize_per_channel_group( | ||
x2, s, zp, qmin, qmax, torch.int8, group_size, | ||
) | ||
out_ptq = torch.ops.quantized_decomposed.dequantize_per_channel_group( | ||
out_ptq, s, zp, qmin, qmax, torch.int8, group_size, torch.float32, | ||
) | ||
torch.testing.assert_close(out, out_ptq, atol=0, rtol=0) | ||
|
||
@unittest.skipIf(not TORCH_VERSION_AFTER_2_3, "skipping when torch verion is 2.3 or lower") | ||
def test_fake_quantize_per_token(self): | ||
(qmin, qmax) = self._get_qmin_qmax(8) | ||
|
||
torch.manual_seed(self.SEED) | ||
x = torch.randn(100, 256).requires_grad_() | ||
x2 = copy.deepcopy(x) | ||
# TODO: use torch.ops.aten.quantized_decomposed version instead | ||
(s, zp) = _choose_qparams_per_token_asymmetric( | ||
x, | ||
torch.int8, # not used | ||
) | ||
|
||
# fake quant op | ||
out = fake_quantize_per_token(x, s, zp, qmin, qmax) | ||
out.sum().backward() | ||
|
||
# compare against PTQ ops | ||
out_ptq = torch.ops.quantized_decomposed.quantize_per_token( | ||
x2, s, zp, qmin, qmax, torch.int8, | ||
) | ||
out_ptq = torch.ops.quantized_decomposed.dequantize_per_token( | ||
out_ptq, s, zp, qmin, qmax, torch.int8, torch.float32, | ||
) | ||
torch.testing.assert_close(out, out_ptq, atol=0, rtol=0) | ||
|
||
def _set_ptq_weight( | ||
self, | ||
ptq_linear: Int8DynActInt4WeightLinear, | ||
fp32_weight: torch.Tensor, | ||
group_size: int, | ||
): | ||
""" | ||
Set the weight to the quantized version of the given fp32 weights, | ||
for making linear outputs comparable with QAT. | ||
""" | ||
n_bit = 4 | ||
(qmin, qmax) = self._get_qmin_qmax(n_bit) | ||
(s, zp) = get_group_qparams_symmetric(fp32_weight, n_bit, group_size) | ||
q_weight = torch.ops.quantized_decomposed.quantize_per_channel_group( | ||
fp32_weight, s, zp, qmin, qmax, torch.int8, group_size, | ||
) | ||
ptq_linear.weight = q_weight | ||
ptq_linear.scales = s | ||
ptq_linear.zeros = zp | ||
|
||
@unittest.skipIf(not TORCH_VERSION_AFTER_2_3, "skipping when torch verion is 2.3 or lower") | ||
def test_qat_8da4w_linear(self): | ||
group_size = 128 | ||
torch.manual_seed(self.SEED) | ||
qat_linear = Int8DynActInt4WeightQATLinear(256, 688, bias=False, groupsize=group_size) | ||
ptq_linear = Int8DynActInt4WeightLinear(256, 688, bias=False, groupsize=group_size) | ||
|
||
# Force the weights to be the same | ||
self._set_ptq_weight(ptq_linear, qat_linear.weight, group_size) | ||
|
||
# Compare linear values | ||
torch.manual_seed(self.SEED) | ||
x = torch.randn(100, 256) | ||
x2 = copy.deepcopy(x) | ||
qat_out = qat_linear(x) | ||
ptq_out = ptq_linear(x2) | ||
torch.testing.assert_close(ptq_out, qat_out, atol=0, rtol=0) | ||
|
||
@unittest.skipIf(not TORCH_VERSION_AFTER_2_3, "skipping when torch verion is 2.3 or lower") | ||
def test_qat_8da4w_quantizer(self): | ||
group_size = 16 | ||
torch.manual_seed(self.SEED) | ||
m = M() | ||
m2 = copy.deepcopy(m) | ||
qat_quantizer = Int8DynActInt4WeightQATQuantizer(groupsize=group_size) | ||
ptq_quantizer = Int8DynActInt4WeightQuantizer(groupsize=group_size) | ||
qat_model = qat_quantizer.prepare(m) | ||
ptq_model = ptq_quantizer.quantize(m2) | ||
|
||
# Force the weights to be the same | ||
self._set_ptq_weight( | ||
ptq_model.linear1, qat_model.linear1.weight, group_size, | ||
) | ||
self._set_ptq_weight( | ||
ptq_model.linear2, qat_model.linear2.weight, group_size, | ||
) | ||
|
||
# Compare model values | ||
torch.manual_seed(self.SEED) | ||
x = m.example_inputs() | ||
x2 = copy.deepcopy(x) | ||
qat_out = qat_model(*x) | ||
ptq_out = ptq_model(*x2) | ||
torch.testing.assert_close(ptq_out, qat_out, atol=0, rtol=0) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.