Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add LibriLightLimited dataset #2302

Closed
wants to merge 11 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions docs/source/datasets.rst
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,14 @@ LIBRISPEECH
:special-members: __getitem__


LibriLightLimited
~~~~~~~~~~~~~~~~~

.. autoclass:: LibriLightLimited
:members:
:special-members: __getitem__


LIBRITTS
~~~~~~~~

Expand Down
112 changes: 112 additions & 0 deletions test/torchaudio_unittest/datasets/librilightlimited_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
import os

from torchaudio.datasets import librilight_limited
from torchaudio_unittest.common_utils import (
get_whitenoise,
save_wav,
TempDirMixin,
TorchaudioTestCase,
)


# Used to generate a unique transcript for each dummy audio file
_NUMBERS = ["ZERO", "ONE", "TWO", "THREE", "FOUR", "FIVE", "SIX", "SEVEN", "EIGHT", "NINE"]


def _save_sample(file_path, speaker_id, chapter_id, utterance_id, sample_rate, seed):
filename = f"{speaker_id}-{chapter_id}-{utterance_id:04d}.flac"
path = os.path.join(file_path, filename)
data = get_whitenoise(sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="float32", seed=seed)
transcript = " ".join([_NUMBERS[x] for x in [speaker_id, chapter_id, utterance_id]])
save_wav(path, data, sample_rate)
sample = (data, sample_rate, transcript, speaker_id, chapter_id, utterance_id)
return sample


def get_mock_dataset(dataset_dir: str):
"""Create mocked dataset for a sub directory.

Args:
dataset_dir (str): the path of the sub directory.
The structure is: audio_type/speaker_id/chapter_id/filename.flac
"""
mocked_data = []
sample_rate = 16000 # 16kHz
seed = 0
for audio_type in ["clean", "other"]:
for speaker_id in range(5):
for chapter_id in range(3):
file_path = os.path.join(dataset_dir, audio_type, str(speaker_id), str(chapter_id))
os.makedirs(file_path, exist_ok=True)
trans_content = []
for utterance_id in range(3):
sample = _save_sample(file_path, speaker_id, chapter_id, utterance_id, sample_rate, seed)
trans_content.append(f"{sample[3]}-{sample[4]}-{sample[5]:04d} {sample[2]}")
mocked_data.append(sample)
seed += 1
trans_filename = f"{speaker_id}-{chapter_id}.trans.txt"
trans_path = os.path.join(file_path, trans_filename)
with open(trans_path, "w") as f:
f.write("\n".join(trans_content))
return mocked_data


def get_mock_datasets(root_dir):
"""
root_dir: directory to the mocked dataset
"""
mocked_data_10min, mocked_data_1h, mocked_data_10h = [], [], []
dataset_dir = os.path.join(root_dir, "librispeech_finetuning", "1h", "0")
os.makedirs(dataset_dir, exist_ok=True)
mocked_data_10min = get_mock_dataset(dataset_dir)
mocked_data_1h += mocked_data_10min
for i in range(1, 6):
dataset_dir = os.path.join(root_dir, "librispeech_finetuning", "1h", str(i))
os.makedirs(dataset_dir, exist_ok=True)
mocked_data_1h += get_mock_dataset(dataset_dir)
mocked_data_10h += mocked_data_1h

dataset_dir = os.path.join(root_dir, "librispeech_finetuning", "9h")
os.makedirs(dataset_dir, exist_ok=True)
mocked_data_10h += get_mock_dataset(dataset_dir)

return mocked_data_10min, mocked_data_1h, mocked_data_10h


class TestLibriLightLimited(TempDirMixin, TorchaudioTestCase):
backend = "default"

root_dir = None
samples_10min = []
samples_1h = []
samples_10h = []

@classmethod
def setUpClass(cls):
cls.root_dir = cls.get_base_temp_dir()
(cls.samples_10min, cls.samples_1h, cls.samples_10h) = get_mock_datasets(cls.root_dir)

def _test_librilightlimited(self, dataset, samples):
num_samples = 0
for i, (data, sample_rate, transcript, speaker_id, chapter_id, utterance_id) in enumerate(dataset):
self.assertEqual(data, samples[i][0], atol=5e-5, rtol=1e-8)
assert sample_rate == samples[i][1]
assert transcript == samples[i][2]
assert speaker_id == samples[i][3]
assert chapter_id == samples[i][4]
assert utterance_id == samples[i][5]
num_samples += 1

assert num_samples == len(samples)

def test_librilightlimited_10min(self):
dataset = librilight_limited.LibriLightLimited(self.root_dir, subset="10min")
self._test_librilightlimited(dataset, self.samples_10min)

def test_librilightlimited_1h(self):
dataset = librilight_limited.LibriLightLimited(self.root_dir, subset="1h")
self._test_librilightlimited(dataset, self.samples_1h)

def test_librilightlimited_10h(self):
dataset = librilight_limited.LibriLightLimited(self.root_dir, subset="10h")
self._test_librilightlimited(dataset, self.samples_10h)
2 changes: 2 additions & 0 deletions torchaudio/datasets/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from .commonvoice import COMMONVOICE
from .dr_vctk import DR_VCTK
from .gtzan import GTZAN
from .librilight_limited import LibriLightLimited
from .librimix import LibriMix
from .librispeech import LIBRISPEECH
from .libritts import LIBRITTS
Expand All @@ -17,6 +18,7 @@
__all__ = [
"COMMONVOICE",
"LIBRISPEECH",
"LibriLightLimited",
"SPEECHCOMMANDS",
"VCTK_092",
"DR_VCTK",
Expand Down
91 changes: 91 additions & 0 deletions torchaudio/datasets/librilight_limited.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
import os
from pathlib import Path
from typing import List, Tuple, Union

from torch import Tensor
from torch.hub import download_url_to_file
from torch.utils.data import Dataset
from torchaudio.datasets.librispeech import load_librispeech_item
from torchaudio.datasets.utils import extract_archive


_ARCHIVE_NAME = "librispeech_finetuning"
_URL = "https://dl.fbaipublicfiles.com/librilight/data/librispeech_finetuning.tgz"
_CHECKSUM = "5d1efdc777b548194d7e09ba89126e2188026df9fd57aa57eb14408d2b2342af"


def _get_fileids_paths(path, subset, _ext_audio) -> List[Tuple[str, str]]:
"""Get the file names and the corresponding file paths without `speaker_id`
and `chapter_id` directories.
The format of path is like:
{root}/{_ARCHIVE_NAME}/1h/[0-5]/[clean, other] or
{root}/{_ARCHIVE_NAME}/9h/[clean, other]
"""
if subset == "10min":
files_paths = [
(os.path.join(os.path.dirname(p), "..", ".."), str(p.stem))
for p in Path(path).glob("1h/0/*/*/*/*" + _ext_audio)
]
elif subset in ["1h", "10h"]:
files_paths = [
(os.path.join(os.path.dirname(p), "..", ".."), str(p.stem))
for p in Path(path).glob("1h/*/*/*/*/*" + _ext_audio)
]
if subset == "10h":
files_paths += [
(os.path.join(os.path.dirname(p), "..", ".."), str(p.stem))
for p in Path(path).glob("9h/*/*/*/*" + _ext_audio)
]
else:
raise ValueError(f"Unsupported subset value. Found {subset}.")
files_paths = sorted(files_paths, key=lambda x: x[0] + x[1])
return files_paths


class LibriLightLimited(Dataset):
"""Create a Dataset for LibriLightLimited, which is the supervised subset of
LibriLight dataset.

Args:
root (str or Path): Path to the directory where the dataset is found or downloaded.
subset (str, optional): The subset to use. Options: [``10min`, ``1h``, ``10h``]
(Default: ``10min``).
download (bool, optional):
Whether to download the dataset if it is not found at root path. (default: ``False``).
"""

_ext_txt = ".trans.txt"
_ext_audio = ".flac"
Comment on lines +57 to +58
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

what's the reasoning behind making these values class variables while making _URL and _CHECKSUM module-level variables?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The flac part particularly is so that in unittest we can mock the dataset with WAV files. In test, we do not want to use torchaudio's I/O module because it will make the test depend on not only the dataset implementation but also on I/O module.

Now, without our own I/O module, there aren't many tools that provide nice FLAC support. (PySoundFile can, but it also depends on installation)

So in test, we generate mock data with WAV format and overwrite the audio extension for the duration of test.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I do not see why .trans.txt should be class variable.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For .trans.txt we can make a separate PR to address for all datasets, such as LibriSpeech and CommonVoice.


nateanl marked this conversation as resolved.
Show resolved Hide resolved
def __init__(
self,
root: Union[str, Path],
subset: str = "10min",
download: bool = False,
) -> None:
assert subset in ["10min", "1h", "10h"], "`subset` must be one of ['10min', '1h', '10h']"

root = os.fspath(root)
self._path = os.path.join(root, _ARCHIVE_NAME)
archive = os.path.join(root, f"{_ARCHIVE_NAME}.tgz")
if not os.path.isdir(self._path):
if not download:
raise RuntimeError("Dataset not found. Please use `download=True` to download")
if not os.path.isfile(archive):
download_url_to_file(_URL, archive, hash_prefix=_CHECKSUM)
extract_archive(archive)
self._fileids_paths = _get_fileids_paths(self._path, subset, self._ext_audio)

def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
(Tensor, int, str, int, int, int):
``(waveform, sample_rate, transcript, speaker_id, chapter_id, utterance_id)``
"""
file_path, fileid = self._fileids_paths[n]
return load_librispeech_item(fileid, file_path, self._ext_audio, self._ext_txt)

def __len__(self) -> int:
return len(self._fileids_paths)