-
Notifications
You must be signed in to change notification settings - Fork 292
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
set strict as default typing mode in
pytorch
Reviewed By: azad-meta Differential Revision: D52957335 fbshipit-source-id: 1f45063e5c6e15d8ae3305efeef3b492131a858a
- Loading branch information
1 parent
b9da26e
commit 8f30da3
Showing
4 changed files
with
413 additions
and
413 deletions.
There are no files selected for viewing
268 changes: 134 additions & 134 deletions
268
torchbenchmark/models/Background_Matting/Data_adobe/compose.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,134 +1,134 @@ | ||
##Copyright 2017 Adobe Systems Inc. | ||
## | ||
##Licensed under the Apache License, Version 2.0 (the "License"); | ||
##you may not use this file except in compliance with the License. | ||
##You may obtain a copy of the License at | ||
## | ||
## http://www.apache.org/licenses/LICENSE-2.0 | ||
## | ||
##Unless required by applicable law or agreed to in writing, software | ||
##distributed under the License is distributed on an "AS IS" BASIS, | ||
##WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
##See the License for the specific language governing permissions and | ||
##limitations under the License. | ||
|
||
|
||
############################################################## | ||
# python compose.py --fg_path fg_train --mask_path mask_train --bg_path bg_train --out_path merged_train --out_csv Adobe_train_data.csv --workers 8 | ||
|
||
from PIL import Image | ||
from tqdm import tqdm | ||
import argparse | ||
import os | ||
import logging | ||
import math | ||
from multiprocessing.pool import ThreadPool | ||
import threading | ||
|
||
parser = argparse.ArgumentParser(description='compose backgrounds and foregrounds') | ||
|
||
parser.add_argument('--fg_path', type=str, required=True, help='path to provided foreground images') | ||
parser.add_argument('--mask_path', type=str, required=True, help='path to provided alpha mattes') | ||
parser.add_argument('--bg_path', type=str, required=True, help='path to to background images (MSCOCO)') | ||
parser.add_argument('--out_path', type=str, required=True, help='path to folder where you want the composited images to go') | ||
|
||
parser.add_argument('--out_csv', type=str, default=os.devnull, help='path to csv file used by data loader') | ||
parser.add_argument('--num_bgs', type=int, default=100, help='number of backgrounds onto which to paste each foreground') | ||
parser.add_argument('--workers', type=int, default=1, help='maximum workers to use, defaults to 1') | ||
args = parser.parse_args() | ||
|
||
fg_path, a_path, bg_path, out_path, num_bgs = args.fg_path, args.mask_path, args.bg_path, args.out_path, args.num_bgs | ||
os.makedirs(out_path, exist_ok=True) | ||
|
||
def format_pbar_str(i, im_name): | ||
pbar_prefix = "(" + str(i) + ") " | ||
width = 33 - len(pbar_prefix) | ||
pretty_name = pbar_prefix + ("..." + im_name[-(width - 3):] if len(im_name) > width else im_name) | ||
return pretty_name.rjust(33) | ||
|
||
def fixpath(path): | ||
return 'Data_adobe/' + path if not os.path.isabs(path) else path | ||
|
||
def composite4(fg, bg, a, w, h): | ||
bg = bg.crop((0,0,w,h)) | ||
bg.paste(fg, mask=a) | ||
return bg | ||
|
||
def process_foreground_image(i, job): | ||
worker_thread_id = int(threading.current_thread().name.rpartition("-")[-1]) | ||
im_name, bg_batch = job | ||
|
||
im_name = im_name.replace(fg_path, '') | ||
im = Image.open(os.path.join(fg_path, im_name)) | ||
al = Image.open(os.path.join(a_path, im_name)) | ||
bbox = im.size | ||
w = bbox[0] | ||
h = bbox[1] | ||
if im.mode != 'RGB' and im.mode != 'RGBA': | ||
im = im.convert('RGB') | ||
if len(al.getbands()) > 0: # take the first channel, usually R | ||
al = al.split()[0] | ||
|
||
output_lines = [] | ||
with lock: | ||
pbar = tqdm(bg_batch, position=worker_thread_id, desc=format_pbar_str(i, im_name), leave=False) | ||
for b, bg_name in enumerate(pbar): | ||
bg = Image.open(os.path.join(bg_path, bg_name)) | ||
if bg.mode != 'RGB': | ||
bg = bg.convert('RGB') | ||
|
||
bg_bbox = bg.size | ||
bw = bg_bbox[0] | ||
bh = bg_bbox[1] | ||
wratio = w / bw | ||
hratio = h / bh | ||
ratio = wratio if wratio > hratio else hratio | ||
if ratio > 1: | ||
bg = bg.resize((math.ceil(bw * ratio), math.ceil(bh * ratio)), Image.BICUBIC) | ||
|
||
try: | ||
out = composite4(im, bg, al, w, h) | ||
back_idx = i * num_bgs + b | ||
out_name = os.path.join(out_path, im_name[:len(im_name) - 4] + '_' + str(back_idx) + '_comp.png') | ||
out.save(out_name, "PNG") | ||
|
||
back = bg.crop((0, 0, w, h)) | ||
back_name = os.path.join(out_path, im_name[:len(im_name) - 4] + '_' + str(back_idx) + '_back.png') | ||
back.save(back_name, "PNG") | ||
|
||
line = os.path.join(fixpath(fg_path), im_name) + ';' + os.path.join(fixpath(a_path), im_name) + ';' + fixpath(out_name) + ';' + fixpath(back_name) + '\n' | ||
output_lines.append(line) | ||
except Exception as e: | ||
logging.error(f"Composing {im_name} onto {bg_name} failed! Skipping. Error: %s" % e) | ||
with lock: | ||
pbar.update() | ||
with lock: | ||
pbar.close() | ||
return output_lines | ||
|
||
fg_files = os.listdir(fg_path) | ||
a_files = os.listdir(a_path) | ||
bg_files = os.listdir(bg_path) | ||
bg_batches = [bg_files[i * num_bgs:(i + 1) * num_bgs] for i in range((len(bg_files) + num_bgs - 1) // num_bgs )] | ||
|
||
lock = threading.Lock() | ||
pool = ThreadPool(args.workers) | ||
with lock: | ||
total_pbar = tqdm(total=len(fg_files), position=args.workers+2, desc="TOTAL", leave=True, smoothing=0.0) | ||
def update_total_pbar(_): | ||
with lock: | ||
total_pbar.update(1) | ||
jobs = [] | ||
for jobargs in enumerate(zip(fg_files, bg_batches)): | ||
jobs.append(pool.apply_async(process_foreground_image, args=jobargs, callback=update_total_pbar)) | ||
pool.close() | ||
pool.join() | ||
|
||
output = [] | ||
for result in jobs: | ||
output.extend(result.get()) | ||
tqdm.write("Done composing...") | ||
|
||
with open(args.out_csv, "w") as f: | ||
for line in output: | ||
f.write(line) | ||
##Copyright 2017 Adobe Systems Inc. | ||
## | ||
##Licensed under the Apache License, Version 2.0 (the "License"); | ||
##you may not use this file except in compliance with the License. | ||
##You may obtain a copy of the License at | ||
## | ||
## http://www.apache.org/licenses/LICENSE-2.0 | ||
## | ||
##Unless required by applicable law or agreed to in writing, software | ||
##distributed under the License is distributed on an "AS IS" BASIS, | ||
##WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
##See the License for the specific language governing permissions and | ||
##limitations under the License. | ||
|
||
|
||
############################################################## | ||
# python compose.py --fg_path fg_train --mask_path mask_train --bg_path bg_train --out_path merged_train --out_csv Adobe_train_data.csv --workers 8 | ||
|
||
from PIL import Image | ||
from tqdm import tqdm | ||
import argparse | ||
import os | ||
import logging | ||
import math | ||
from multiprocessing.pool import ThreadPool | ||
import threading | ||
|
||
parser = argparse.ArgumentParser(description='compose backgrounds and foregrounds') | ||
|
||
parser.add_argument('--fg_path', type=str, required=True, help='path to provided foreground images') | ||
parser.add_argument('--mask_path', type=str, required=True, help='path to provided alpha mattes') | ||
parser.add_argument('--bg_path', type=str, required=True, help='path to to background images (MSCOCO)') | ||
parser.add_argument('--out_path', type=str, required=True, help='path to folder where you want the composited images to go') | ||
|
||
parser.add_argument('--out_csv', type=str, default=os.devnull, help='path to csv file used by data loader') | ||
parser.add_argument('--num_bgs', type=int, default=100, help='number of backgrounds onto which to paste each foreground') | ||
parser.add_argument('--workers', type=int, default=1, help='maximum workers to use, defaults to 1') | ||
args = parser.parse_args() | ||
|
||
fg_path, a_path, bg_path, out_path, num_bgs = args.fg_path, args.mask_path, args.bg_path, args.out_path, args.num_bgs | ||
os.makedirs(out_path, exist_ok=True) | ||
|
||
def format_pbar_str(i, im_name): | ||
pbar_prefix = "(" + str(i) + ") " | ||
width = 33 - len(pbar_prefix) | ||
pretty_name = pbar_prefix + ("..." + im_name[-(width - 3):] if len(im_name) > width else im_name) | ||
return pretty_name.rjust(33) | ||
|
||
def fixpath(path): | ||
return 'Data_adobe/' + path if not os.path.isabs(path) else path | ||
|
||
def composite4(fg, bg, a, w, h): | ||
bg = bg.crop((0,0,w,h)) | ||
bg.paste(fg, mask=a) | ||
return bg | ||
|
||
def process_foreground_image(i, job): | ||
worker_thread_id = int(threading.current_thread().name.rpartition("-")[-1]) | ||
im_name, bg_batch = job | ||
|
||
im_name = im_name.replace(fg_path, '') | ||
im = Image.open(os.path.join(fg_path, im_name)) | ||
al = Image.open(os.path.join(a_path, im_name)) | ||
bbox = im.size | ||
w = bbox[0] | ||
h = bbox[1] | ||
if im.mode != 'RGB' and im.mode != 'RGBA': | ||
im = im.convert('RGB') | ||
if len(al.getbands()) > 0: # take the first channel, usually R | ||
al = al.split()[0] | ||
|
||
output_lines = [] | ||
with lock: | ||
pbar = tqdm(bg_batch, position=worker_thread_id, desc=format_pbar_str(i, im_name), leave=False) | ||
for b, bg_name in enumerate(pbar): | ||
bg = Image.open(os.path.join(bg_path, bg_name)) | ||
if bg.mode != 'RGB': | ||
bg = bg.convert('RGB') | ||
|
||
bg_bbox = bg.size | ||
bw = bg_bbox[0] | ||
bh = bg_bbox[1] | ||
wratio = w / bw | ||
hratio = h / bh | ||
ratio = wratio if wratio > hratio else hratio | ||
if ratio > 1: | ||
bg = bg.resize((math.ceil(bw * ratio), math.ceil(bh * ratio)), Image.BICUBIC) | ||
|
||
try: | ||
out = composite4(im, bg, al, w, h) | ||
back_idx = i * num_bgs + b | ||
out_name = os.path.join(out_path, im_name[:len(im_name) - 4] + '_' + str(back_idx) + '_comp.png') | ||
out.save(out_name, "PNG") | ||
|
||
back = bg.crop((0, 0, w, h)) | ||
back_name = os.path.join(out_path, im_name[:len(im_name) - 4] + '_' + str(back_idx) + '_back.png') | ||
back.save(back_name, "PNG") | ||
|
||
line = os.path.join(fixpath(fg_path), im_name) + ';' + os.path.join(fixpath(a_path), im_name) + ';' + fixpath(out_name) + ';' + fixpath(back_name) + '\n' | ||
output_lines.append(line) | ||
except Exception as e: | ||
logging.error(f"Composing {im_name} onto {bg_name} failed! Skipping. Error: %s" % e) | ||
with lock: | ||
pbar.update() | ||
with lock: | ||
pbar.close() | ||
return output_lines | ||
|
||
fg_files = os.listdir(fg_path) | ||
a_files = os.listdir(a_path) | ||
bg_files = os.listdir(bg_path) | ||
bg_batches = [bg_files[i * num_bgs:(i + 1) * num_bgs] for i in range((len(bg_files) + num_bgs - 1) // num_bgs )] | ||
|
||
lock = threading.Lock() | ||
pool = ThreadPool(args.workers) | ||
with lock: | ||
total_pbar = tqdm(total=len(fg_files), position=args.workers+2, desc="TOTAL", leave=True, smoothing=0.0) | ||
def update_total_pbar(_): | ||
with lock: | ||
total_pbar.update(1) | ||
jobs = [] | ||
for jobargs in enumerate(zip(fg_files, bg_batches)): | ||
jobs.append(pool.apply_async(process_foreground_image, args=jobargs, callback=update_total_pbar)) | ||
pool.close() | ||
pool.join() | ||
|
||
output = [] | ||
for result in jobs: | ||
output.extend(result.get()) | ||
tqdm.write("Done composing...") | ||
|
||
with open(args.out_csv, "w") as f: | ||
for line in output: | ||
f.write(line) |
34 changes: 17 additions & 17 deletions
34
torchbenchmark/models/pytorch_unet/pytorch_unet/utils/utils.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,17 +1,17 @@ | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
def plot_img_and_mask(img, mask): | ||
classes = mask.shape[0] if len(mask.shape) > 2 else 1 | ||
fig, ax = plt.subplots(1, classes + 1) | ||
ax[0].set_title('Input image') | ||
ax[0].imshow(img) | ||
if classes > 1: | ||
for i in range(classes): | ||
ax[i + 1].set_title(f'Output mask (class {i + 1})') | ||
ax[i + 1].imshow(mask[:, :, i]) | ||
else: | ||
ax[1].set_title(f'Output mask') | ||
ax[1].imshow(mask) | ||
plt.xticks([]), plt.yticks([]) | ||
plt.show() | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
def plot_img_and_mask(img, mask): | ||
classes = mask.shape[0] if len(mask.shape) > 2 else 1 | ||
fig, ax = plt.subplots(1, classes + 1) | ||
ax[0].set_title('Input image') | ||
ax[0].imshow(img) | ||
if classes > 1: | ||
for i in range(classes): | ||
ax[i + 1].set_title(f'Output mask (class {i + 1})') | ||
ax[i + 1].imshow(mask[:, :, i]) | ||
else: | ||
ax[1].set_title(f'Output mask') | ||
ax[1].imshow(mask) | ||
plt.xticks([]), plt.yticks([]) | ||
plt.show() |
Oops, something went wrong.