-
Notifications
You must be signed in to change notification settings - Fork 319
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] TensorDictMap Query module
ghstack-source-id: 1ec8f4c6b4067c7e7b171c7f77a25ee1c27dcf56 Pull Request resolved: #2305
- Loading branch information
Showing
4 changed files
with
264 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
from __future__ import annotations | ||
|
||
from copy import deepcopy | ||
from typing import Any, Callable, Dict, List, Mapping, TypeVar | ||
|
||
import torch | ||
import torch.nn as nn | ||
from tensordict import NestedKey, TensorDictBase | ||
from tensordict.nn.common import TensorDictModuleBase | ||
from torchrl._utils import logger as torchrl_logger | ||
from torchrl.data.map import SipHash | ||
|
||
K = TypeVar("K") | ||
V = TypeVar("V") | ||
|
||
|
||
class HashToInt(nn.Module): | ||
"""Converts a hash value to an integer that can be used for indexing a contiguous storage.""" | ||
|
||
def __init__(self): | ||
super().__init__() | ||
self._index_to_index = {} | ||
|
||
def __call__(self, key: torch.Tensor, extend: bool = False) -> torch.Tensor: | ||
result = [] | ||
if extend: | ||
for _item in key.tolist(): | ||
result.append( | ||
self._index_to_index.setdefault(_item, len(self._index_to_index)) | ||
) | ||
else: | ||
for _item in key.tolist(): | ||
result.append( | ||
self._index_to_index.get(_item, len(self._index_to_index)) | ||
) | ||
return torch.tensor(result, device=key.device, dtype=key.dtype) | ||
|
||
def state_dict(self) -> Dict[str, torch.Tensor]: | ||
values = torch.tensor(self._index_to_index.values()) | ||
keys = torch.tensor(self._index_to_index.keys()) | ||
return {"keys": keys, "values": values} | ||
|
||
def load_state_dict( | ||
self, state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False | ||
): | ||
keys = state_dict["keys"] | ||
values = state_dict["values"] | ||
self._index_to_index = { | ||
key: val for key, val in zip(keys.tolist(), values.tolist()) | ||
} | ||
|
||
|
||
class QueryModule(TensorDictModuleBase): | ||
"""A Module to generate compatible indices for storage. | ||
A module that queries a storage and return required index of that storage. | ||
Currently, it only outputs integer indices (torch.int64). | ||
Args: | ||
in_keys (list of NestedKeys): keys of the input tensordict that | ||
will be used to generate the hash value. | ||
index_key (NestedKey): the output key where the index value will be written. | ||
Defaults to ``"_index"``. | ||
Keyword Args: | ||
hash_key (NestedKey): the output key where the hash value will be written. | ||
Defaults to ``"_hash"``. | ||
hash_module (Callable[[Any], int] or a list of these, optional): a hash | ||
module similar to :class:`~tensordict.nn.SipHash` (default). | ||
If a list of callables is provided, its length must equate the number of in_keys. | ||
hash_to_int (Callable[[int], int], optional): a stateful function that | ||
maps a hash value to a non-negative integer corresponding to an index in a | ||
storage. Defaults to :class:`~torchrl.data.map.HashToInt`. | ||
aggregator (Callable[[int], int], optional): a hash function to group multiple hashes | ||
together. This argument should only be passed when there is more than one ``in_keys``. | ||
If a single ``hash_module`` is provided but no aggregator is passed, it will take | ||
the value of the hash_module. If no ``hash_module`` or a list of ``hash_modules`` is | ||
provided but no aggregator is passed, it will default to ``SipHash``. | ||
clone (bool, optional): if ``True``, a shallow clone of the input TensorDict will be | ||
returned. This can be used to retrieve the integer index within the storage, | ||
corresponding to a given input tensordict. | ||
Defaults to ``False``. | ||
d | ||
Examples: | ||
>>> query_module = QueryModule( | ||
... in_keys=["key1", "key2"], | ||
... index_key="index", | ||
... hash_module=SipHash(), | ||
... ) | ||
>>> query = TensorDict( | ||
... { | ||
... "key1": torch.Tensor([[1], [1], [1], [2]]), | ||
... "key2": torch.Tensor([[3], [3], [2], [3]]), | ||
... "other": torch.randn(4), | ||
... }, | ||
... batch_size=(4,), | ||
... ) | ||
>>> res = query_module(query) | ||
>>> # The first two pairs of key1 and key2 match | ||
>>> assert res["index"][0] == res["index"][1] | ||
>>> # The last three pairs of key1 and key2 have at least one mismatching value | ||
>>> assert res["index"][1] != res["index"][2] | ||
>>> assert res["index"][2] != res["index"][3] | ||
""" | ||
|
||
def __init__( | ||
self, | ||
in_keys: List[NestedKey], | ||
index_key: NestedKey = "_index", | ||
hash_key: NestedKey = "_hash", | ||
*, | ||
hash_module: Callable[[Any], int] | List[Callable[[Any], int]] | None = None, | ||
hash_to_int: Callable[[int], int] | None = None, | ||
aggregator: Callable[[Any], int] = None, | ||
clone: bool = False, | ||
): | ||
if len(in_keys) == 0: | ||
raise ValueError("`in_keys` cannot be empty.") | ||
in_keys = in_keys if isinstance(in_keys, List) else [in_keys] | ||
|
||
super().__init__() | ||
in_keys = self.in_keys = in_keys | ||
self.out_keys = [index_key, hash_key] | ||
index_key = self.out_keys[0] | ||
self.hash_key = self.out_keys[1] | ||
|
||
if aggregator is not None and len(self.in_keys) == 1: | ||
torchrl_logger.warn( | ||
"An aggregator was provided but there is only one in-key to be read. " | ||
"This module will be ignored." | ||
) | ||
elif aggregator is None: | ||
if hash_module is not None and not isinstance(hash_module, list): | ||
aggregator = hash_module | ||
else: | ||
aggregator = SipHash() | ||
if hash_module is None: | ||
hash_module = [SipHash() for _ in range(len(self.in_keys))] | ||
elif not isinstance(hash_module, list): | ||
try: | ||
hash_module = [ | ||
deepcopy(hash_module) if len(self.in_keys) > 1 else hash_module | ||
for _ in range(len(self.in_keys)) | ||
] | ||
except Exception as err: | ||
raise RuntimeError( | ||
"failed to deepcopy the hash module. Please provide a list of hash modules instead." | ||
) from err | ||
elif len(hash_module) != len(self.in_keys): | ||
raise ValueError( | ||
"The number of hash_modules must match the number of in_keys. " | ||
f"Got {len(hash_module)} hash modules but {len(in_keys)} in_keys." | ||
) | ||
if hash_to_int is None: | ||
hash_to_int = HashToInt() | ||
|
||
self.aggregator = aggregator | ||
self.hash_module = dict(zip(self.in_keys, hash_module)) | ||
self.hash_to_int = hash_to_int | ||
|
||
self.index_key = index_key | ||
self.clone = clone | ||
|
||
def forward( | ||
self, | ||
tensordict: TensorDictBase, | ||
extend: bool = True, | ||
write_hash: bool = True, | ||
) -> TensorDictBase: | ||
hash_values = [] | ||
|
||
for k in self.in_keys: | ||
hash_values.append(self.hash_module[k](tensordict.get(k))) | ||
if len(self.in_keys) > 1: | ||
hash_values = torch.stack( | ||
hash_values, | ||
dim=-1, | ||
) | ||
hash_values = self.aggregator(hash_values) | ||
else: | ||
hash_values = hash_values[0] | ||
|
||
td_hash_value = self.hash_to_int(hash_values, extend=extend) | ||
|
||
if self.clone: | ||
output = tensordict.copy() | ||
else: | ||
output = tensordict | ||
|
||
output.set(self.index_key, td_hash_value) | ||
if write_hash: | ||
output.set(self.hash_key, hash_values) | ||
return output |