Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[export] Add exportable position embedding #2068

Merged
merged 4 commits into from
Nov 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
184 changes: 184 additions & 0 deletions tests/torchtune/modules/_export/test_export_position_embeddings.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import os
import tempfile
import unittest

import torch
from torch._inductor.package import load_package, package_aoti
from torch.testing import assert_close
from torchtune.models.clip import (
TiledTokenPositionalEmbedding as TuneTiledTokenPositionalEmbedding,
TilePositionalEmbedding as TuneTilePositionalEmbedding,
)
from torchtune.modules._export._position_embeddings import (
replace_tile_positional_embedding,
replace_tiled_token_positional_embedding,
TiledTokenPositionalEmbedding,
TilePositionalEmbedding,
)
from torchtune.utils import torch_version_ge


class TilePositionalEmbeddingTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.tpe = TilePositionalEmbedding(4, 1280)
self.ref_tpe = TuneTilePositionalEmbedding(4, 1280)
self.x = torch.randn(1, 4, 1600, 1280)
self.aspect_ratio = torch.tensor([[1, 1]])
num_tiles_dim = torch.export.Dim("num_tiles", min=1, max=4)
num_tokens = torch.export.Dim("num_tokens", min=1, max=1600)

self.dynamic_shape = {
0: 1, # batch
1: num_tiles_dim, # num tiles
2: num_tokens, # num tokens
3: 1280, # embedding dim
}

def test_tile_positional_embedding_smoke(self):
y = self.tpe(self.x, self.aspect_ratio)
ref_y = self.ref_tpe(self.x, self.aspect_ratio)

self.assertTrue(torch.allclose(y, ref_y))

@unittest.skipUnless(
torch_version_ge("2.6.0.dev20241117"), reason="Need recent fixes for export"
)
def test_tile_positional_embedding_export(self):

tpe_ep = torch.export.export(
self.tpe,
(self.x, self.aspect_ratio),
dynamic_shapes=(
self.dynamic_shape,
None,
), # assuming aspect ratio is static
)

y = tpe_ep.module()(self.x, self.aspect_ratio)
ref_y = self.ref_tpe(self.x, self.aspect_ratio)

self.assertTrue(torch.allclose(y, ref_y))

@unittest.skipUnless(
torch_version_ge("2.6.0.dev20241117"), reason="Need recent fixes for aoti"
)
def test_tile_positional_embedding_aoti(self):
so = torch._export.aot_compile(
self.tpe,
args=(self.x, self.aspect_ratio),
options={"aot_inductor.package": True},
dynamic_shapes=(
self.dynamic_shape,
None,
), # assuming aspect ratio is static
)
with tempfile.TemporaryDirectory() as tmpdir:
path = package_aoti(os.path.join(tmpdir, "tpe.pt2"), so)
tpe_aoti = load_package(path)

y = tpe_aoti(self.x, self.aspect_ratio)
ref_y = self.ref_tpe(self.x, self.aspect_ratio)

self.assertTrue(torch.allclose(y, ref_y))

def test_replace_tile_positional_embedding(self):
class Module(torch.nn.Module):
def __init__(self):
super().__init__()
self.tpe = TuneTilePositionalEmbedding(4, 1280)

def forward(self, x, aspect_ratio):
return self.tpe(x, aspect_ratio)

m = Module()
m = replace_tile_positional_embedding(m)
self.assertTrue(isinstance(m.tpe, TilePositionalEmbedding))


class TiledTokenPositionalEmbeddingTest(unittest.TestCase):
def setUp(self):
super().setUp()
self.tpe = TiledTokenPositionalEmbedding(4, 1280, 40, 1)
self.ref_tpe = TuneTiledTokenPositionalEmbedding(4, 1280, 40, 1)
self.tpe.load_state_dict(self.ref_tpe.state_dict())
self.x = torch.randn(1, 4, 1601, 1280)
self.aspect_ratio = torch.tensor([[1, 2]])
num_tiles_dim = torch.export.Dim("num_tiles", min=1, max=4)

self.dynamic_shape = {
0: 1, # batch
1: num_tiles_dim, # num tiles
2: 1601, # num tokens
3: 1280, # embedding dim
}

def test_tiled_token_positional_embedding_smoke(self):
y = self.tpe(self.x, self.aspect_ratio)
ref_y = self.ref_tpe(self.x, self.aspect_ratio)

assert_close(y, ref_y)

@unittest.skipUnless(
torch_version_ge("2.6.0.dev20241117"), reason="Need recent fixes for export"
)
def test_tiled_token_positional_embedding_export(self):

tpe_ep = torch.export.export(
self.tpe,
(self.x, self.aspect_ratio),
dynamic_shapes=(
self.dynamic_shape,
None,
), # assuming aspect ratio is static
)

y = tpe_ep.module()(self.x, self.aspect_ratio)
ref_y = self.ref_tpe(self.x, self.aspect_ratio)

assert_close(y, ref_y)

@unittest.skipUnless(
torch_version_ge("2.6.0.dev20241117"), reason="Need recent fixes for aoti"
)
def test_tiled_token_positional_embedding_aoti(self):
tpe_ep = torch.export.export(
self.tpe,
(self.x, self.aspect_ratio),
dynamic_shapes=(
self.dynamic_shape,
None,
), # assuming aspect ratio is static
)

with tempfile.TemporaryDirectory() as tmpdir:
path = torch._inductor.aoti_compile_and_package(
tpe_ep,
(self.x, self.aspect_ratio),
package_path=os.path.join(tmpdir, "tpe.pt2"),
)
tpe_aoti = load_package(path)

y = tpe_aoti(self.x, self.aspect_ratio)
ref_y = self.ref_tpe(self.x, self.aspect_ratio)

assert_close(y, ref_y)

def test_replace_tiled_token_positional_embedding(self):
class Module(torch.nn.Module):
def __init__(self):
super().__init__()
self.tpe = TuneTiledTokenPositionalEmbedding(4, 1280, 40, 1)

def forward(self, x, aspect_ratio):
return self.tpe(x, aspect_ratio)

m = Module()
m = replace_tiled_token_positional_embedding(m)
self.assertTrue(isinstance(m.tpe, TiledTokenPositionalEmbedding))
Loading
Loading