Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make RandomHorizontalFlip torchscriptable #2278

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 38 additions & 0 deletions test/test_transforms_tensor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
from PIL import Image

import numpy as np

import unittest


class Tester(unittest.TestCase):
def _create_data(self, height=3, width=3, channels=3):
tensor = torch.randint(0, 255, (channels, height, width), dtype=torch.uint8)
pil_img = Image.fromarray(tensor.permute(1, 2, 0).contiguous().numpy())
return tensor, pil_img

def compareTensorToPIL(self, tensor, pil_image):
pil_tensor = torch.as_tensor(np.array(pil_image).transpose((2, 0, 1)))
self.assertTrue(tensor.equal(pil_tensor))

def test_random_horizontal_flip(self):
tensor, pil_img = self._create_data()
flip_tensor = F.hflip(tensor)
flip_pil_img = F.hflip(pil_img)
self.compareTensorToPIL(flip_tensor, flip_pil_img)

scripted_fn = torch.jit.script(F.hflip)
flip_tensor_script = scripted_fn(tensor)
self.assertTrue(flip_tensor.equal(flip_tensor_script))

# test for class interface
f = T.RandomHorizontalFlip()
scripted_fn = torch.jit.script(f)
scripted_fn(tensor)


if __name__ == '__main__':
unittest.main()
19 changes: 13 additions & 6 deletions torchvision/transforms/functional.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import torch
from torch import Tensor
import math
from PIL import Image, ImageOps, ImageEnhance, __version__ as PILLOW_VERSION
try:
Expand All @@ -11,6 +12,9 @@
from collections.abc import Sequence, Iterable
import warnings

from . import functional_pil as F_pil
from . import functional_tensor as F_t


def _is_pil_image(img):
if accimage is not None:
Expand Down Expand Up @@ -428,19 +432,22 @@ def resized_crop(img, top, left, height, width, size, interpolation=Image.BILINE
return img


def hflip(img):
"""Horizontally flip the given PIL Image.
def hflip(img: Tensor) -> Tensor:
"""Horizontally flip the given PIL Image or torch Tensor.

Args:
img (PIL Image): Image to be flipped.
img (PIL Image or Torch Tensor): Image to be flipped. If img
is a Tensor, it is expected to be in [..., H, W] format,
where ... means it can have an arbitrary number of trailing
dimensions.

Returns:
PIL Image: Horizontally flipped image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))
if not isinstance(img, torch.Tensor):
return F_pil.hflip(img)

return img.transpose(Image.FLIP_LEFT_RIGHT)
return F_t.hflip(img)


def _parse_fill(fill, img, min_pil_version):
Expand Down
30 changes: 30 additions & 0 deletions torchvision/transforms/functional_pil.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
import torch
try:
import accimage
except ImportError:
accimage = None
from PIL import Image, ImageOps, ImageEnhance, __version__ as PILLOW_VERSION


@torch.jit.unused
def _is_pil_image(img):
if accimage is not None:
return isinstance(img, (Image.Image, accimage.Image))
else:
return isinstance(img, Image.Image)


@torch.jit.unused
def hflip(img):
"""Horizontally flip the given PIL Image.

Args:
img (PIL Image): Image to be flipped.

Returns:
PIL Image: Horizontally flipped image.
"""
if not _is_pil_image(img):
raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

return img.transpose(Image.FLIP_LEFT_RIGHT)
3 changes: 1 addition & 2 deletions torchvision/transforms/functional_tensor.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,10 @@
import torch
import torchvision.transforms.functional as F
from torch import Tensor
from torch.jit.annotations import Optional, List, BroadcastingList2, Tuple


def _is_tensor_a_torch_image(input):
return len(input.shape) == 3
return input.ndim >= 2


def vflip(img):
Expand Down
16 changes: 10 additions & 6 deletions torchvision/transforms/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -500,25 +500,29 @@ def __repr__(self):
return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding)


class RandomHorizontalFlip(object):
"""Horizontally flip the given PIL Image randomly with a given probability.
class RandomHorizontalFlip(torch.nn.Module):
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@eellison this is the part I would like your thoughts on

"""Horizontally flip the given image randomly with a given probability.
The image can be a PIL Image or a torch Tensor, in which case it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading
dimensions

Args:
p (float): probability of the image being flipped. Default value is 0.5
"""

def __init__(self, p=0.5):
super().__init__()
self.p = p

def __call__(self, img):
def forward(self, img):
"""
Args:
img (PIL Image): Image to be flipped.
img (PIL Image or Tensor): Image to be flipped.

Returns:
PIL Image: Randomly flipped image.
PIL Image or Tensor: Randomly flipped image.
"""
if random.random() < self.p:
if torch.rand(1) < self.p:
return F.hflip(img)
return img

Expand Down