Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adds Generalized IOU, Tests for Box Ops #2642

Merged
merged 20 commits into from
Sep 24, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/ops.rst
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ torchvision.ops
.. autofunction:: clip_boxes_to_image
.. autofunction:: box_area
.. autofunction:: box_iou
.. autofunction:: generalized_box_iou
.. autofunction:: roi_align
.. autofunction:: ps_roi_align
.. autofunction:: roi_pool
Expand Down
46 changes: 46 additions & 0 deletions test/test_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -647,5 +647,51 @@ def test_convert_boxes_to_roi_format(self):
self.assertTrue(torch.equal(ref_tensor, ops._utils.convert_boxes_to_roi_format(box_sequence)))


class BoxAreaTester(unittest.TestCase):
def test_box_area(self):
# A bounding box of area 10000 and a degenerate case
box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0]], dtype=torch.float)
expected = torch.tensor([10000, 0])
calc_area = ops.box_area(box_tensor)
assert calc_area.size() == torch.Size([2])
assert calc_area.dtype == box_tensor.dtype
assert torch.all(torch.eq(calc_area, expected)).item() is True


class BoxIouTester(unittest.TestCase):
def test_iou(self):
# Boxes to test Iou
boxes1 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)
boxes2 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)

# Expected IoU matrix for these boxes
expected = torch.tensor([[1.0, 0.25, 0.0], [0.25, 1.0, 0.0], [0.0, 0.0, 1.0]])

out = ops.box_iou(boxes1, boxes2)

# Check if all elements of tensor are as expected.
assert out.size() == torch.Size([3, 3])
tolerance = 1e-4
assert ((out - expected).abs().max() < tolerance).item() is True


class GenBoxIouTester(unittest.TestCase):
def test_gen_iou(self):
# Test Generalized IoU
boxes1 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)
boxes2 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)

# Expected gIoU matrix for these boxes
expected = torch.tensor([[1.0, 0.25, -0.7778], [0.25, 1.0, -0.8611],
[-0.7778, -0.8611, 1.0]])

out = ops.generalized_box_iou(boxes1, boxes2)

# Check if all elements of tensor are as expected.
assert out.size() == torch.Size([3, 3])
tolerance = 1e-4
assert ((out - expected).abs().max() < tolerance).item() is True


if __name__ == '__main__':
unittest.main()
4 changes: 2 additions & 2 deletions torchvision/ops/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from .boxes import nms, batched_nms, remove_small_boxes, clip_boxes_to_image, box_area, box_iou
from .boxes import nms, batched_nms, remove_small_boxes, clip_boxes_to_image, box_area, box_iou, generalized_box_iou
from .new_empty_tensor import _new_empty_tensor
from .deform_conv import deform_conv2d, DeformConv2d
from .roi_align import roi_align, RoIAlign
Expand All @@ -15,7 +15,7 @@

__all__ = [
'deform_conv2d', 'DeformConv2d', 'nms', 'batched_nms', 'remove_small_boxes',
'clip_boxes_to_image', 'box_area', 'box_iou', 'roi_align', 'RoIAlign', 'roi_pool',
'clip_boxes_to_image', 'box_area', 'box_iou', 'generalized_box_iou', 'roi_align', 'RoIAlign', 'roi_pool',
'RoIPool', '_new_empty_tensor', 'ps_roi_align', 'PSRoIAlign', 'ps_roi_pool',
'PSRoIPool', 'MultiScaleRoIAlign', 'FeaturePyramidNetwork'
]
46 changes: 44 additions & 2 deletions torchvision/ops/boxes.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,8 +161,7 @@ def box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
boxes2 (Tensor[M, 4])

Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2
"""
area1 = box_area(boxes1)
area2 = box_area(boxes2)
Expand All @@ -175,3 +174,46 @@ def box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:

iou = inter / (area1[:, None] + area2 - inter)
return iou


# Implementation adapted from https://github.com/facebookresearch/detr/blob/master/util/box_ops.py
def generalized_box_iou(boxes1: Tensor, boxes2: Tensor) -> Tensor:
"""
Return generalized intersection-over-union (Jaccard index) of boxes.

Both sets of boxes are expected to be in (x1, y1, x2, y2) format.

Arguments:
boxes1 (Tensor[N, 4])
boxes2 (Tensor[M, 4])

Returns:
generalized_iou (Tensor[N, M]): the NxM matrix containing the pairwise generalized_IoU values
for every element in boxes1 and boxes2
"""

# degenerate boxes gives inf / nan results
# so do an early check
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()

area1 = box_area(boxes1)
area2 = box_area(boxes2)

lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]

wh = (rb - lt).clamp(min=0) # [N,M,2]
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]

union = area1[:, None] + area2 - inter

iou = inter / union

oke-aditya marked this conversation as resolved.
Show resolved Hide resolved
lti = torch.min(boxes1[:, None, :2], boxes2[:, :2])
rbi = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])

whi = (rbi - lti).clamp(min=0) # [N,M,2]
areai = whi[:, :, 0] * whi[:, :, 1]

return iou - (areai - union) / areai