Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add GoogLeNet (Inception v1) #678

Merged
merged 14 commits into from
Mar 7, 2019
Merged
Show file tree
Hide file tree
Changes from 13 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions docs/source/models.rst
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ architectures:
- `SqueezeNet`_
- `DenseNet`_
- `Inception`_ v3
- `GoogLeNet`_

You can construct a model with random weights by calling its constructor:

Expand All @@ -22,6 +23,7 @@ You can construct a model with random weights by calling its constructor:
squeezenet = models.squeezenet1_0()
densenet = models.densenet161()
inception = models.inception_v3()
googlenet = models.googlenet()

We provide pre-trained models, using the PyTorch :mod:`torch.utils.model_zoo`.
These can be constructed by passing ``pretrained=True``:
Expand All @@ -35,6 +37,7 @@ These can be constructed by passing ``pretrained=True``:
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)

Instancing a pre-trained model will download its weights to a cache directory.
This directory can be set using the `TORCH_MODEL_ZOO` environment variable. See
Expand Down Expand Up @@ -84,6 +87,7 @@ Densenet-169 24.00 7.00
Densenet-201 22.80 6.43
Densenet-161 22.35 6.20
Inception v3 22.55 6.44
GoogleNet 31.67 11.45
================================ ============= =============


Expand All @@ -93,6 +97,7 @@ Inception v3 22.55 6.44
.. _SqueezeNet: https://arxiv.org/abs/1602.07360
.. _DenseNet: https://arxiv.org/abs/1608.06993
.. _Inception: https://arxiv.org/abs/1512.00567
.. _GoogLeNet: https://arxiv.org/abs/1409.4842

.. currentmodule:: torchvision.models

Expand Down Expand Up @@ -142,3 +147,8 @@ Inception v3

.. autofunction:: inception_v3

GoogLeNet
------------

.. autofunction:: googlenet

1 change: 1 addition & 0 deletions torchvision/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,3 +4,4 @@
from .squeezenet import *
from .inception import *
from .densenet import *
from .googlenet import *
183 changes: 183 additions & 0 deletions torchvision/models/googlenet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import model_zoo

__all__ = ['GoogLeNet', 'googlenet']

model_urls = {
# GoogLeNet ported from TensorFlow
'googlenet': 'https://download.pytorch.org/models/googlenet-1378be20.pth',
}


def googlenet(pretrained=False, **kwargs):
r"""GoogLeNet (Inception v1) model architecture from
`"Going Deeper with Convolutions" <http://arxiv.org/abs/1409.4842>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
if 'transform_input' not in kwargs:
kwargs['transform_input'] = True
kwargs['init_weights'] = False
model = GoogLeNet(**kwargs)
model.load_state_dict(model_zoo.load_url(model_urls['googlenet']))
return model

return GoogLeNet(**kwargs)


class GoogLeNet(nn.Module):

def __init__(self, num_classes=1000, aux_logits=True, transform_input=False, init_weights=True):
super(GoogLeNet, self).__init__()
self.aux_logits = aux_logits
self.transform_input = transform_input

self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
self.conv2 = BasicConv2d(64, 64, kernel_size=1)
self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
Copy link
Contributor Author

@TheCodez TheCodez Mar 7, 2019

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@fmassa one thing to note here is that TensorFlow uses 2x2 pooling here instead of 3x3. Don't know if that has a positive impact on the accuracy, but it would mean to further diverge from the paper definition.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What was the reason why you used 3x3 pooling, in order to make everything work out fine, given the differences between TF and PyTorch?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This didn't cause problems during my conversion process so I probably just missed it. Should I change it? In that case it might be a good idea to add a note that the implementation differs from the paper.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

let me try seeing if it makes a difference for the performance, and I'll let you know

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Accuracy is 1 point better using the 2x2 pooling, with

Acc@1 69.778 Acc@5 89.530

so I'll be changing it. Thanks for the heads up


self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
if aux_logits:
self.aux1 = InceptionAux(512, num_classes)
self.aux2 = InceptionAux(528, num_classes)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout(0.4)
self.fc = nn.Linear(1024, num_classes)

if init_weights:
self._initialize_weights()

def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0.2)
elif isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

def forward(self, x):
if self.transform_input:
x_ch0 = torch.unsqueeze(x[:, 0], 1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
x_ch1 = torch.unsqueeze(x[:, 1], 1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
x_ch2 = torch.unsqueeze(x[:, 2], 1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
x = torch.cat((x_ch0, x_ch1, x_ch2), 1)

x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.maxpool2(x)

x = self.inception3a(x)
x = self.inception3b(x)
x = self.maxpool3(x)
x = self.inception4a(x)
if self.training and self.aux_logits:
aux1 = self.aux1(x)

x = self.inception4b(x)
x = self.inception4c(x)
x = self.inception4d(x)
if self.training and self.aux_logits:
aux2 = self.aux2(x)

x = self.inception4e(x)
x = self.maxpool4(x)
x = self.inception5a(x)
x = self.inception5b(x)

x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.dropout(x)
x = self.fc(x)
if self.training and self.aux_logits:
return aux1, aux2, x
return x


class Inception(nn.Module):

def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
super(Inception, self).__init__()

self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

self.branch2 = nn.Sequential(
BasicConv2d(in_channels, ch3x3red, kernel_size=1),
BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)
)

self.branch3 = nn.Sequential(
BasicConv2d(in_channels, ch5x5red, kernel_size=1),
BasicConv2d(ch5x5red, ch5x5, kernel_size=3, padding=1)
)

self.branch4 = nn.Sequential(
nn.MaxPool2d(kernel_size=3, stride=1, padding=1, ceil_mode=True),
BasicConv2d(in_channels, pool_proj, kernel_size=1)
)

def forward(self, x):
branch1 = self.branch1(x)
branch2 = self.branch2(x)
branch3 = self.branch3(x)
branch4 = self.branch4(x)

outputs = [branch1, branch2, branch3, branch4]
return torch.cat(outputs, 1)


class InceptionAux(nn.Module):

def __init__(self, in_channels, num_classes):
super(InceptionAux, self).__init__()
self.conv = BasicConv2d(in_channels, 128, kernel_size=1)

self.fc1 = nn.Linear(2048, 1024)
self.fc2 = nn.Linear(1024, num_classes)

def forward(self, x):
x = F.adaptive_avg_pool2d(x, (4, 4))

x = self.conv(x)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x), inplace=True)
x = F.dropout(x, 0.7, training=self.training)
x = self.fc2(x)

return x


class BasicConv2d(nn.Module):

def __init__(self, in_channels, out_channels, **kwargs):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)