Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Miscellaneous improvements to the classification reference scripts #894

Merged
merged 2 commits into from
May 8, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
104 changes: 77 additions & 27 deletions references/classification/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,18 @@ def evaluate(model, criterion, data_loader, device):
return metric_logger.acc1.global_avg


def _get_cache_path(filepath):
import hashlib
h = hashlib.sha1(filepath.encode()).hexdigest()
cache_path = os.path.join("~", ".torch", "vision", "datasets", "imagefolder", h[:10] + ".pt")
cache_path = os.path.expanduser(cache_path)
return cache_path


def main(args):
if args.output_dir:
utils.mkdir(args.output_dir)

utils.init_distributed_mode(args)
print(args)

Expand All @@ -76,28 +87,45 @@ def main(args):

print("Loading training data")
st = time.time()
scale = (0.08, 1.0)
if args.model == 'mobilenet_v2':
scale = (0.2, 1.0)
dataset = torchvision.datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224, scale=scale),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
cache_path = _get_cache_path(traindir)
if args.cache_dataset and os.path.exists(cache_path):
# Attention, as the transforms are also cached!
print("Loading dataset_train from {}".format(cache_path))
dataset, _ = torch.load(cache_path)
else:
dataset = torchvision.datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
if args.cache_dataset:
print("Saving dataset_train to {}".format(cache_path))
utils.mkdir(os.path.dirname(cache_path))
utils.save_on_master((dataset, traindir), cache_path)
print("Took", time.time() - st)

print("Loading validation data")
dataset_test = torchvision.datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
cache_path = _get_cache_path(valdir)
if args.cache_dataset and os.path.exists(cache_path):
# Attention, as the transforms are also cached!
print("Loading dataset_test from {}".format(cache_path))
dataset_test, _ = torch.load(cache_path)
else:
dataset_test = torchvision.datasets.ImageFolder(
valdir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
if args.cache_dataset:
print("Saving dataset_test to {}".format(cache_path))
utils.mkdir(os.path.dirname(cache_path))
utils.save_on_master((dataset_test, valdir), cache_path)

print("Creating data loaders")
if args.distributed:
Expand All @@ -118,7 +146,7 @@ def main(args):
print("Creating model")
model = torchvision.models.__dict__[args.model]()
model.to(device)
if args.distributed:
if args.distributed and args.sync_bn:
model = torch.nn.utils.convert_sync_batchnorm(model)

model_without_ddp = model
Expand All @@ -131,41 +159,47 @@ def main(args):
optimizer = torch.optim.SGD(
model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)

# if using mobilenet, step_size=2 and gamma=0.94
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)

if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1

if args.test_only:
evaluate(model, criterion, data_loader_test, device=device)
return

print("Start training")
start_time = time.time()
for epoch in range(args.epochs):
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
lr_scheduler.step()
train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args.print_freq)
evaluate(model, criterion, data_loader_test, device=device)
if args.output_dir:
utils.save_on_master({
checkpoint = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'args': args},
'epoch': epoch,
'args': args}
utils.save_on_master(
checkpoint,
os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
utils.save_on_master(
checkpoint,
os.path.join(args.output_dir, 'checkpoint.pth'))

total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))


if __name__ == "__main__":
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='PyTorch Classification Training')

Expand All @@ -188,6 +222,20 @@ def main(args):
parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
parser.add_argument('--output-dir', default='.', help='path where to save')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument(
"--cache-dataset",
dest="cache_dataset",
help="Cache the datasets for quicker initialization. It also serializes the transforms",
action="store_true",
)
parser.add_argument(
"--sync-bn",
dest="sync_bn",
help="Use sync batch norm",
action="store_true",
)
parser.add_argument(
"--test-only",
dest="test_only",
Expand All @@ -202,7 +250,9 @@ def main(args):

args = parser.parse_args()

if args.output_dir:
utils.mkdir(args.output_dir)
return args


if __name__ == "__main__":
args = parse_args()
main(args)
10 changes: 6 additions & 4 deletions references/classification/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -214,13 +214,15 @@ def save_on_master(*args, **kwargs):


def init_distributed_mode(args):
if 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
elif hasattr(args, "rank"):
pass
else:
print('Not using distributed mode')
args.distributed = False
Expand Down