-
Notifications
You must be signed in to change notification settings - Fork 480
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding megablox gmm standalone (#6940)
Co-authored-by: Wonjoo Lee <wonjoo@google.com>
- Loading branch information
1 parent
c1b745e
commit 40f7e1f
Showing
5 changed files
with
580 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
"""Grouped matrix multiplication kernels for TPU written in Pallas.""" | ||
|
||
import logging | ||
import unittest | ||
|
||
from typing import Optional, Union, Callable | ||
|
||
import torch | ||
import torch_xla | ||
import torch_xla.core.xla_model as xm | ||
import torch_xla.experimental.megablox as megablox | ||
from torch_xla import runtime as xr | ||
from torch_xla._internal import tpu | ||
|
||
import numpy as np | ||
|
||
if xr.device_type() == 'TPU': | ||
from torch_xla.experimental.custom_kernel import jax_import_guard | ||
jax_import_guard() | ||
import jax | ||
import jax.numpy as jnp | ||
from jax.experimental import pallas as pl | ||
|
||
|
||
class MegabloxTest(unittest.TestCase): | ||
|
||
def _reference_gmm( | ||
self, | ||
lhs: np.array, | ||
rhs: np.array, | ||
group_sizes: np.array, | ||
preferred_element_type: np.dtype = np.float32, | ||
) -> np.array: | ||
|
||
start = 0 | ||
out = [] | ||
for i, size in enumerate(group_sizes): | ||
result = np.dot(lhs[start:start + size, :], rhs[i, :, :]) | ||
|
||
result = result.astype(preferred_element_type) | ||
out.append(result) | ||
start += group_sizes[i] | ||
return np.array(np.concatenate(out, axis=0)) | ||
|
||
def _group_sizes_strategy(self, m: int, num_groups: int) -> torch.Tensor: | ||
# Randomly sample the ends of the groups in the m-dimension. Let the fuzzer | ||
# sample with replacement so that it's possible to get zero-sized groups. Get | ||
# 'num_groups - 1' run ends. The final group will end at 'm'. | ||
ends_no_final = np.sort( | ||
np.array( | ||
[np.random.randint(low=0, high=m) for _ in range(num_groups - 1)], | ||
dtype=np.int32, | ||
),) | ||
ends = np.concatenate([ends_no_final, np.array([m], dtype=np.int32)]) | ||
|
||
# Calculate the run starts by shifting ends 1 to the right. The first run | ||
# starts at zero. | ||
starts = np.concatenate([np.zeros(1, dtype=np.int32), ends_no_final]) | ||
return torch.from_numpy(ends - starts).to(torch.int32) | ||
|
||
def _tolerances(self, lhs_dtype: torch.dtype, rhs_dtype: torch.dtype, | ||
out_dtype: torch.dtype) -> tuple[float, float]: | ||
if (lhs_dtype == torch.bfloat16 or rhs_dtype == torch.bfloat16 or | ||
out_dtype == torch.bfloat16): | ||
return 1e-3, 1e-2 # atol, rtol | ||
return 1e-4, 1e-2 # atol, rtol | ||
|
||
LutFn = Callable[[int, int, int], Optional[tuple[int, int, int]]] | ||
|
||
def _init_test_cases(self): | ||
self.tests_cases = [] | ||
self.tests_cases.append({ | ||
'dtype': torch.float32, | ||
'm': 128, | ||
'k': 128, | ||
'n': 128, | ||
'num_groups': 1 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.float32, | ||
'm': 256, | ||
'k': 128, | ||
'n': 128, | ||
'num_groups': 1 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.float32, | ||
'm': 128, | ||
'k': 256, | ||
'n': 128, | ||
'num_groups': 8 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.float32, | ||
'm': 512, | ||
'k': 128, | ||
'n': 256, | ||
'num_groups': 2 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.bfloat16, | ||
'm': 128, | ||
'k': 128, | ||
'n': 128, | ||
'num_groups': 1 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.bfloat16, | ||
'm': 256, | ||
'k': 128, | ||
'n': 128, | ||
'num_groups': 1 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.bfloat16, | ||
'm': 128, | ||
'k': 256, | ||
'n': 128, | ||
'num_groups': 8 | ||
}) | ||
self.tests_cases.append({ | ||
'dtype': torch.bfloat16, | ||
'm': 512, | ||
'k': 128, | ||
'n': 256, | ||
'num_groups': 2 | ||
}) | ||
|
||
@unittest.skipIf(xr.device_type() != 'TPU', "This test only works on TPU.") | ||
def test_gmm(self): | ||
self._init_test_cases() | ||
for test_case in self.tests_cases: | ||
num_groups = test_case['num_groups'] | ||
k = test_case['k'] | ||
m = test_case['m'] | ||
n = test_case['n'] | ||
lhs_dtype = rhs_dtype = test_case['dtype'] | ||
out_dtype = torch.float32 | ||
|
||
lhs = torch.rand(m, k, dtype=lhs_dtype).to('xla') | ||
rhs = torch.rand(num_groups, k, n, dtype=rhs_dtype).to('xla') | ||
group_sizes = self._group_sizes_strategy(m=m, num_groups=num_groups) | ||
out = megablox.gmm(lhs, rhs, group_sizes) | ||
|
||
ref_out = self._reference_gmm(lhs.cpu().float().numpy(), | ||
rhs.cpu().float().numpy(), | ||
group_sizes.numpy()) | ||
|
||
atol, rtol = self._tolerances(lhs_dtype, rhs_dtype, out_dtype) | ||
np.testing.assert_allclose( | ||
ref_out, np.array(out[0].cpu()), rtol=rtol, atol=atol) | ||
|
||
|
||
if __name__ == '__main__': | ||
logging.getLogger().setLevel(logging.INFO) | ||
torch.set_default_dtype(torch.float32) | ||
torch.manual_seed(42) | ||
torch_xla._XLAC._xla_set_use_full_mat_mul_precision( | ||
use_full_mat_mul_precision=True) | ||
test = unittest.main() | ||
sys.exit(0 if test.result.wasSuccessful() else 1) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .gmm import gmm |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
"""Common utilities for Pallas kernels.""" | ||
|
||
from typing import Union | ||
import torch | ||
from torch_xla._internal import tpu | ||
|
||
|
||
def assert_is_supported_dtype(dtype: torch.dtype) -> None: | ||
if dtype != torch.bfloat16 and dtype != torch.float32: | ||
raise ValueError(f"Expected bfloat16 or float32 array but got {dtype}.") | ||
|
||
|
||
def select_input_dtype(lhs: torch.Tensor, rhs: torch.Tensor) -> torch.dtype: | ||
"""A type to which both input should be adapted to before dot product.""" | ||
# bf16xbf16 matmul is only supported since TPU v4 generation. In | ||
# case of mixed input precision, we need to convert bf16 argument to fp32 | ||
# beforehand. | ||
if (tpu.version() >= 4 and lhs.dtype == torch.bfloat16 and | ||
rhs.dtype == torch.bfloat16): | ||
return torch.bfloat16 | ||
else: | ||
return torch.float32 |
Oops, something went wrong.