Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Codegen addcdiv and addcmul #3768

Merged
merged 6 commits into from
Aug 16, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion scripts/gen_lazy_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def node_base_ctor_call(self, schema: LazyIrSchema) -> str:
base_ctor_value_args = ", ".join(base_ctor_value_args_list)

shape_fn_inputs_list = [
f"{a.name}" for a in schema.positional_args
f"{a.name}" for a in (schema.positional_args + schema.keyword_args)
if (a.is_lazy_value or isinstance(a.lazy_type, VectorCType) or
is_boolean_dtype(a.lazy_type) or a.name == 'reduction')
]
Expand Down
31 changes: 0 additions & 31 deletions torch_xla/csrc/aten_xla_type.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -612,37 +612,6 @@ at::Tensor XLANativeFunctions::add(const at::Tensor& self,
});
}

at::Tensor XLANativeFunctions::addcdiv(const at::Tensor& self,
const at::Tensor& tensor1,
const at::Tensor& tensor2,
const at::Scalar& value) {
XLA_FN_COUNTER("xla::");
return bridge::AtenFromXlaTensor(XLATensor::addcdiv(
bridge::GetXlaTensor(self), value, bridge::GetXlaTensor(tensor1),
bridge::GetXlaTensor(tensor2)));
}

at::Tensor& XLANativeFunctions::addcdiv_(at::Tensor& self,
const at::Tensor& tensor1,
const at::Tensor& tensor2,
const at::Scalar& value) {
XLA_FN_COUNTER("xla::");
XLATensorPtr self_tensor = bridge::GetXlaTensor(self);
XLATensor::addcdiv_(self_tensor, value, bridge::GetXlaTensor(tensor1),
bridge::GetXlaTensor(tensor2));
return self;
}

at::Tensor XLANativeFunctions::addcmul(const at::Tensor& self,
const at::Tensor& tensor1,
const at::Tensor& tensor2,
const at::Scalar& value) {
XLA_FN_COUNTER("xla::");
return bridge::AtenFromXlaTensor(XLATensor::addcmul(
bridge::GetXlaTensor(self), value, bridge::GetXlaTensor(tensor1),
bridge::GetXlaTensor(tensor2)));
}

at::Tensor XLANativeFunctions::addmm(const at::Tensor& self,
const at::Tensor& mat1,
const at::Tensor& mat2,
Expand Down
17 changes: 17 additions & 0 deletions torch_xla/csrc/ops/ops_lower_fn.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
#include "torch_xla/csrc/matrix.h"
#include "torch_xla/csrc/pooling.h"
#include "torch_xla/csrc/reduction.h"
#include "torch_xla/csrc/xla_lower_util.h"

namespace torch_xla {
torch_xla::XlaOpVector Abs::Lower(LoweringContext* loctx) const {
Expand Down Expand Up @@ -69,6 +70,22 @@ torch_xla::XlaOpVector Amin::Lower(LoweringContext* loctx) const {
return ReturnOp(BuildMinInDims(input, dim, keepdim), loctx);
}

torch_xla::XlaOpVector Addcdiv::Lower(LoweringContext* loctx) const {
xla::XlaOp xla_input = loctx->GetOutputOp(operand(0));
xla::XlaOp xla_t1 = loctx->GetOutputOp(operand(1));
xla::XlaOp xla_t2 = loctx->GetOutputOp(operand(2));
xla::XlaOp xla_val = loctx->GetOutputOp(operand(3));
return ReturnOp(BuildAddcdiv(xla_input, xla_t1, xla_t2, xla_val), loctx);
}

torch_xla::XlaOpVector Addcmul::Lower(LoweringContext* loctx) const {
xla::XlaOp xla_input = loctx->GetOutputOp(operand(0));
xla::XlaOp xla_t1 = loctx->GetOutputOp(operand(1));
xla::XlaOp xla_t2 = loctx->GetOutputOp(operand(2));
xla::XlaOp xla_val = loctx->GetOutputOp(operand(3));
return ReturnOp(BuildAddcmul(xla_input, xla_t1, xla_t2, xla_val), loctx);
}

torch_xla::XlaOpVector Asin::Lower(LoweringContext* loctx) const {
xla::XlaOp xla_input = loctx->GetOutputOp(operand(0));
return ReturnOp(xla::Asin(xla_input), loctx);
Expand Down
26 changes: 26 additions & 0 deletions torch_xla/csrc/ops/ops_xla_shape_fn.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
#include "torch_xla/csrc/helpers.h"
#include "torch_xla/csrc/pooling.h"
#include "torch_xla/csrc/reduction.h"
#include "torch_xla/csrc/xla_lower_util.h"

namespace torch_xla {
namespace {
Expand Down Expand Up @@ -109,6 +110,31 @@ xla::Shape AllOutputShape(const torch::lazy::Value& input) {
return InferOutputShape({GetXlaShape(input)}, lower_for_shape_fn);
}

xla::Shape AddcdivOutputShape(const torch::lazy::Value& input,
const torch::lazy::Value& t1,
const torch::lazy::Value& t2,
const torch::lazy::Value& value) {
auto shape_fn = [](absl::Span<const xla::XlaOp> operands) -> xla::XlaOp {
return BuildAddcdiv(operands[0], operands[1], operands[2], operands[3]);
};
return InferOutputShape({GetXlaShape(input), GetXlaShape(t1), GetXlaShape(t2),
GetXlaShape(value)},
shape_fn);
}

xla::Shape AddcmulOutputShape(const torch::lazy::Value& input,
const torch::lazy::Value& t1,
const torch::lazy::Value& t2,
const torch::lazy::Value& value) {
auto shape_fn = [](absl::Span<const xla::XlaOp> operands) -> xla::XlaOp {
return BuildAddcmul(operands[0], operands[1], operands[2], operands[3]);
};

return InferOutputShape({GetXlaShape(input), GetXlaShape(t1), GetXlaShape(t2),
GetXlaShape(value)},
shape_fn);
}

xla::Shape AsinOutputShape(const torch::lazy::Value& input) {
return GetXlaShape(input);
}
Expand Down
10 changes: 10 additions & 0 deletions torch_xla/csrc/ops/ops_xla_shape_fn.h
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,16 @@ xla::Shape AminOutputShape(const torch::lazy::Value& input,

xla::Shape AllOutputShape(const torch::lazy::Value& input);

xla::Shape AddcdivOutputShape(const torch::lazy::Value& input,
const torch::lazy::Value& t1,
const torch::lazy::Value& t2,
const torch::lazy::Value& value);

xla::Shape AddcmulOutputShape(const torch::lazy::Value& input,
const torch::lazy::Value& t1,
const torch::lazy::Value& t2,
const torch::lazy::Value& value);

xla::Shape AsinOutputShape(const torch::lazy::Value& input);

xla::Shape AsinhOutputShape(const torch::lazy::Value& input);
Expand Down
29 changes: 0 additions & 29 deletions torch_xla/csrc/tensor_methods.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -660,35 +660,6 @@ XLATensorPtr XLATensor::add(
logical_element_type);
}

XLATensorPtr XLATensor::addcdiv(const XLATensorPtr& input,
const at::Scalar& value,
const XLATensorPtr& tensor1,
const XLATensorPtr& tensor2) {
torch::lazy::Value constant = GetIrValueForScalar(
value, tensor1->shape().get().element_type(), input->GetDevice());
torch::lazy::Value div = tensor1->GetIrValue() / tensor2->GetIrValue();
return input->CreateFrom(input->GetIrValue() + div * constant);
}

void XLATensor::addcdiv_(XLATensorPtr& input, const at::Scalar& value,
const XLATensorPtr& tensor1,
const XLATensorPtr& tensor2) {
torch::lazy::Value constant = GetIrValueForScalar(
value, tensor1->shape().get().element_type(), input->GetDevice());
torch::lazy::Value div = tensor1->GetIrValue() / tensor2->GetIrValue();
input->SetInPlaceIrValue(input->GetIrValue() + div * constant);
}

XLATensorPtr XLATensor::addcmul(const XLATensorPtr& input,
const at::Scalar& value,
const XLATensorPtr& tensor1,
const XLATensorPtr& tensor2) {
torch::lazy::Value constant = GetIrValueForScalar(
value, tensor1->shape().get().element_type(), input->GetDevice());
torch::lazy::Value mul = tensor1->GetIrValue() * tensor2->GetIrValue();
return input->CreateFrom(input->GetIrValue() + mul * constant);
}

XLATensorPtr XLATensor::addmm(const XLATensorPtr& input,
const XLATensorPtr& weight,
const XLATensorPtr& bias) {
Expand Down
13 changes: 13 additions & 0 deletions torch_xla/csrc/xla_lower_util.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1012,4 +1012,17 @@ xla::XlaOp BuildRoll(xla::XlaOp input, absl::Span<const int64_t> shifts,
return need_flatten ? xla::Reshape(input, input_shape.dimensions()) : input;
}

xla::XlaOp BuildAddcdiv(xla::XlaOp input, xla::XlaOp t1, xla::XlaOp t2,
xla::XlaOp val) {
return XlaHelpers::PromotedAdd(
input, XlaHelpers::PromotedMul(XlaHelpers::PromotedDiv(t1, t2), val));
}

xla::XlaOp BuildAddcmul(xla::XlaOp input, xla::XlaOp t1, xla::XlaOp t2,
xla::XlaOp val) {
val = MaybeConvertTo(val, XlaHelpers::ShapeOfXlaOp(t1).element_type());
return XlaHelpers::PromotedAdd(
input, XlaHelpers::PromotedMul(XlaHelpers::PromotedMul(t1, t2), val));
}

} // namespace torch_xla
6 changes: 6 additions & 0 deletions torch_xla/csrc/xla_lower_util.h
Original file line number Diff line number Diff line change
Expand Up @@ -119,4 +119,10 @@ xla::XlaOp BuildXLogY(xla::XlaOp input, xla::XlaOp other);
xla::XlaOp BuildRoll(xla::XlaOp input, absl::Span<const int64_t> shifts,
absl::Span<const int64_t> dims);

xla::XlaOp BuildAddcdiv(xla::XlaOp input, xla::XlaOp t1, xla::XlaOp t2,
xla::XlaOp val);

xla::XlaOp BuildAddcmul(xla::XlaOp input, xla::XlaOp t1, xla::XlaOp t2,
xla::XlaOp val);

} // namespace torch_xla
5 changes: 2 additions & 3 deletions xla_native_functions.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@ full_codegen:
- all
- amax
- amin
- addcdiv
- addcmul
- asin
- asinh
- atan
Expand Down Expand Up @@ -95,9 +97,6 @@ supported:
- adaptive_max_pool2d_backward
- add.Scalar
- add.Tensor
- addcdiv
- addcdiv_
- addcmul
- addmm
- alias
- all.dim
Expand Down