Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Clean-up CUDA cache. #6325

Merged
merged 2 commits into from
Jan 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 21 additions & 7 deletions benchmarks/torchbench_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,6 +166,14 @@ class TorchBenchModel(BenchmarkModel):
def __init__(self, suite_name, model_name, benchmark_experiment):
super().__init__(suite_name, model_name, benchmark_experiment)

def _cleanup(self):
# Garbage-collect right now.
gc.collect()

# If we are using CUDA, clean-up its cache left-over.
if self.benchmark_experiment.accelerator == "cuda":
torch.cuda.empty_cache()

def set_up(self):
"""Set up module, actual batch_size, example_inputs, and optimizer_class

Expand All @@ -181,12 +189,16 @@ def set_up(self):

# Move the initialized model to XLA device.
if self.benchmark_experiment.xla:
import torch.utils._pytree as pytree
# First, move the model and the inputs to CPU.
# This avoids having dupplicated data on CUDA.
if self.benchmark_experiment.accelerator == "cuda":
self.module = self.module.to("cpu")
self.example_inputs = move_to_device(self.example_inputs, "cpu")
self._cleanup()

device = self.benchmark_experiment.get_device()
self.module = self.module.to(device)
self.example_inputs = pytree.tree_map_only(torch.Tensor,
lambda t: t.to(device),
self.example_inputs)
self.example_inputs = move_to_device(self.example_inputs, device)

# Torchbench has quite different setup for yolov3, so directly passing
# the right example_inputs
Expand All @@ -197,7 +209,7 @@ def set_up(self):
self.optimizer = benchmark.optimizer

del benchmark
gc.collect()
self._cleanup()

def load_benchmark(self):
try:
Expand Down Expand Up @@ -247,13 +259,15 @@ def default_precision_flag(self):
elif test == "train" and hasattr(benchmark, 'DEFAULT_TRAIN_CUDA_PRECISION'):
precision = benchmark.DEFAULT_TRAIN_CUDA_PRECISION
else:
precision = None
logger.warning("No default precision set. No patching needed.")
return None

del benchmark
gc.collect()
self._cleanup()

precision_flag = None
if precision is None:
return None
if precision == "fp16":
precision_flag = 'XLA_USE_FP16'
elif precision == "amp":
Expand Down
12 changes: 2 additions & 10 deletions benchmarks/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
import random
import subprocess
import torch
import torch.utils._pytree as pytree
import sys
import torch_xla.core.xla_model as xm
from torch_xla._internal import tpu
Expand Down Expand Up @@ -76,16 +77,7 @@ def is_xla_device_available(devkind):


def move_to_device(item, device):
if isinstance(item, torch.Tensor):
return item.to(device=device)
elif isinstance(item, list):
return [move_to_device(t, device) for t in item]
elif isinstance(item, tuple):
return tuple(move_to_device(t, device) for t in item)
elif isinstance(item, dict):
return dict((k, move_to_device(t, device)) for k, t in item.items())
else:
return item
return pytree.tree_map_only(torch.Tensor, lambda t: t.to(device), item)


def randomize_input(inputs):
Expand Down