Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Revert "Fix some more core aten ops (#6342)" #6377

Merged
merged 1 commit into from
Jan 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion codegen/xla_native_functions.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,6 @@ full_codegen:
- rsqrt
- selu
- sgn
- sigmoid
- sign
- silu
- silu_backward
Expand Down Expand Up @@ -303,6 +302,7 @@ supported:
- select_scatter
- selu_
- set_.source_Tensor
- sigmoid
- sigmoid_backward
- slice_copy.Tensor
- slice_scatter
Expand Down
22 changes: 6 additions & 16 deletions test/test_core_aten_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -1904,17 +1904,11 @@ def test_aten_gelu_0(self):
kwargs = dict()
run_export_and_compare(self, torch.ops.aten.gelu, args, kwargs)

@unittest.skip
def test_aten_gelu_1(self):
args = (torch.randn((10, 10)).to(torch.float16),)
kwargs = dict()
run_export_and_compare(
self,
torch.ops.aten.gelu,
args,
kwargs,
rtol=0.001,
atol=0.01,
)
run_export_and_compare(self, torch.ops.aten.gelu, args, kwargs)

def test_aten_glu_0(self):
args = (
Expand Down Expand Up @@ -3091,6 +3085,7 @@ def test_aten_native_group_norm_0(self):
kwargs = dict()
run_export_and_compare(self, torch.ops.aten.native_group_norm, args, kwargs)

@unittest.skip
def test_aten_native_group_norm_1(self):
args = (
torch.randn((1, 3, 2, 10)).to(torch.float16),
Expand All @@ -3103,14 +3098,7 @@ def test_aten_native_group_norm_1(self):
0.0,
)
kwargs = dict()
run_export_and_compare(
self,
torch.ops.aten.native_group_norm,
args,
kwargs,
rtol=0.001,
atol=0.01,
)
run_export_and_compare(self, torch.ops.aten.native_group_norm, args, kwargs)

def test_aten_native_layer_norm_0(self):
args = (
Expand Down Expand Up @@ -3417,6 +3405,7 @@ def test_aten_reciprocal_1(self):
kwargs = dict()
run_export_and_compare(self, torch.ops.aten.reciprocal, args, kwargs)

@unittest.skip
def test_aten_reciprocal_2(self):
args = (torch.randint(0, 10, (10, 10)).to(torch.int32),)
kwargs = dict()
Expand Down Expand Up @@ -4014,6 +4003,7 @@ def test_aten_sigmoid_1(self):
kwargs = dict()
run_export_and_compare(self, torch.ops.aten.sigmoid, args, kwargs)

@unittest.skip
def test_aten_sigmoid_2(self):
args = (torch.randint(0, 10, (10, 10)).to(torch.int32),)
kwargs = dict()
Expand Down
6 changes: 6 additions & 0 deletions torch_xla/csrc/aten_xla_type.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2758,6 +2758,12 @@ at::Tensor& XLANativeFunctions::set_(at::Tensor& self,
return self;
}

at::Tensor XLANativeFunctions::sigmoid(const at::Tensor& self) {
TORCH_LAZY_FN_COUNTER_TIMED_TRACING("xla::");
return bridge::AtenFromXlaTensor(
tensor_methods::sigmoid(bridge::GetXlaTensor(self)));
}

at::Tensor XLANativeFunctions::sigmoid_backward(const at::Tensor& grad_output,
const at::Tensor& output) {
TORCH_LAZY_FN_COUNTER_TIMED_TRACING("xla::");
Expand Down
12 changes: 0 additions & 12 deletions torch_xla/csrc/ops/ops_lower_fn.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -684,10 +684,6 @@ torch_xla::XlaOpVector NeTensor::Lower(LoweringContext* loctx) const {

torch_xla::XlaOpVector Reciprocal::Lower(LoweringContext* loctx) const {
xla::XlaOp xla_input = loctx->GetOutputOp(operand(0));
if (xla::primitive_util::IsIntegralType(XlaHelpers::TypeOfXlaOp(xla_input))) {
xla::PrimitiveType input_type = XlaHelpers::TypeOfXlaOp(xla_input);
xla_input = ConvertTo(xla_input, input_type, xla::PrimitiveType::F32);
}
return ReturnOp(BuildReciprocal(xla_input), loctx);
}

Expand Down Expand Up @@ -730,14 +726,6 @@ torch_xla::XlaOpVector Sgn::Lower(LoweringContext* loctx) const {
return ReturnOp(BuildSgn(xla_input), loctx);
}

torch_xla::XlaOpVector Sigmoid::Lower(LoweringContext* loctx) const {
xla::XlaOp xla_input = loctx->GetOutputOp(operand(0));
if (xla::primitive_util::IsIntegralType(XlaHelpers::TypeOfXlaOp(xla_input))) {
xla_input = xla::ConvertElementType(xla_input, xla::PrimitiveType::F32);
}
return ReturnOp(xla::Logistic(xla_input), loctx);
}

torch_xla::XlaOpVector Sign::Lower(LoweringContext* loctx) const {
xla::XlaOp xla_input = loctx->GetOutputOp(operand(0));
return ReturnOp(BuildSign(xla_input), loctx);
Expand Down
14 changes: 1 addition & 13 deletions torch_xla/csrc/ops/ops_xla_shape_fn.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -762,11 +762,7 @@ xla::Shape NeTensorOutputShape(const torch::lazy::Value& self,
}

xla::Shape ReciprocalOutputShape(const torch::lazy::Value& input) {
xla::Shape result_shape = GetXlaShape(input);
if (xla::primitive_util::IsIntegralType(result_shape.element_type())) {
result_shape.set_element_type(xla::PrimitiveType::F32);
}
return result_shape;
return GetXlaShape(input);
}

xla::Shape ReluOutputShape(const torch::lazy::Value& input) {
Expand Down Expand Up @@ -808,14 +804,6 @@ xla::Shape SgnOutputShape(const torch::lazy::Value& input) {
return GetXlaShape(input);
}

xla::Shape SigmoidOutputShape(const torch::lazy::Value& input) {
xla::Shape result_shape = GetXlaShape(input);
if (xla::primitive_util::IsIntegralType(result_shape.element_type())) {
result_shape.set_element_type(xla::PrimitiveType::F32);
}
return result_shape;
}

xla::Shape SignOutputShape(const torch::lazy::Value& input) {
return GetXlaShape(input);
}
Expand Down
2 changes: 0 additions & 2 deletions torch_xla/csrc/ops/ops_xla_shape_fn.h
Original file line number Diff line number Diff line change
Expand Up @@ -248,8 +248,6 @@ xla::Shape SeluOutputShape(const torch::lazy::Value& input);

xla::Shape SgnOutputShape(const torch::lazy::Value& input);

xla::Shape SigmoidOutputShape(const torch::lazy::Value& input);

xla::Shape SignOutputShape(const torch::lazy::Value& input);

xla::Shape SiluOutputShape(const torch::lazy::Value& input);
Expand Down