Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add function for retrieving fallback operations. #7116

Merged
merged 5 commits into from
May 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 54 additions & 0 deletions test/test_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,11 @@
import unittest


def XLAExperimentalContains(feat):
experimental = os.environ.get("XLA_EXPERIMENTAL", "").split(":")
return feat in experimental


class MetricsTest(unittest.TestCase):

def test_clear_counters(self):
Expand Down Expand Up @@ -205,6 +210,55 @@ def test_pybind_increment_counter(self):
torch_xla._XLAC._xla_increment_counter('FakeCounter', 2)
self.assertEqual(met.counter_value('FakeCounter'), 2)

def test_get_fallback_ops(self):

def getAndAssertFallbackOpsLenEquals(count):
fallback_ops = met.executed_fallback_ops()
fallback_ops_number = len(fallback_ops)
self.assertEqual(
fallback_ops_number,
count,
msg=f"found {fallback_ops_number}: {fallback_ops}")
return fallback_ops

# Reset all metrics, and make sure we don't start with any fallback ops.
met.clear_all()
getAndAssertFallbackOpsLenEquals(0)

# Create N boxes in the format XYXY.
# This should not run any fallback ops.
N = 10
x = torch.rand(N, 1).to(xm.xla_device())
y = torch.rand(N, 1).to(xm.xla_device())
width = torch.rand(N, 1).to(xm.xla_device())
height = torch.rand(N, 1).to(xm.xla_device())
xys = torch.cat((x, x + width, y, y - height), dim=1)
getAndAssertFallbackOpsLenEquals(0)

# tensor.item() is a fallback operation.
xys[0, 0].item()
ops = getAndAssertFallbackOpsLenEquals(1)
self.assertEqual(ops[0], "aten::_local_scalar_dense")

# Reset all metrics, and make sure we also don't retrieve any
# fallback operations.
met.clear_all()
getAndAssertFallbackOpsLenEquals(0)

if not XLAExperimentalContains("nms"):
# Run torchvision operations as fallback.
import torchvision
scores = torch.rand(N).to(xm.xla_device())
# NMS doesn't have a PyTorch/XLA implementation without dynamic shapes.
torchvision.ops.nms(xys, scores, 0.5)
# remove_small_boxes is not implemented in C++. It calls other PyTorch
# operations. One of them, nonzero, is a fallback operation.
torchvision.ops.remove_small_boxes(
xys, torch.median(torch.stack((width, height))))
ops = getAndAssertFallbackOpsLenEquals(3)
self.assertEqual(
set(ops), {"aten::nonzero", "aten::median", "torchvision::nms"})


if __name__ == '__main__':
test = unittest.main()
Expand Down
10 changes: 1 addition & 9 deletions torch_xla/core/dynamo_bridge.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,15 +100,7 @@ def __call__(self, args):


def get_fallback_ops():
fallback_ops = []
for opname in metrics.counter_names():
if "aten::" not in opname:
continue
val = int(metrics.counter_value(opname))
if val > 0:
fallback_ops.append(f"{opname}={val}")

return fallback_ops
return metrics.executed_fallback_ops()


# Checks that all input args that are tensors are on the same device.
Expand Down
12 changes: 12 additions & 0 deletions torch_xla/csrc/aten_cpu_fallback.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,18 @@ namespace torch_xla {
static std::unordered_map<std::string, ::torch_xla::runtime::metrics::Counter*>
_cpu_fallback_counters;

// Get all the executed fallback operations.
// In other words, get all of them whose counters are not zero.
std::vector<std::string> GetFallbackOperations() {
std::vector<std::string> fallback;
for (auto const& pair : _cpu_fallback_counters) {
if (pair.second->Value() != 0) {
fallback.push_back(pair.first);
}
}
return fallback;
}

void xla_cpu_fallback(const c10::OperatorHandle& op, torch::jit::Stack* stack) {
XLA_FN_TRACK(3);
const auto name = c10::toString(op.operator_name());
Expand Down
4 changes: 3 additions & 1 deletion torch_xla/csrc/aten_cpu_fallback.h
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,8 @@ namespace torch_xla {

void xla_cpu_fallback(const c10::OperatorHandle& op, torch::jit::Stack* stack);

std::vector<std::string> GetFallbackOperations();

} // namespace torch_xla

#endif // XLA_TORCH_XLA_CSRC_ATEN_CPU_FALLBACK_H_
#endif // XLA_TORCH_XLA_CSRC_ATEN_CPU_FALLBACK_H_
2 changes: 2 additions & 0 deletions torch_xla/csrc/init_python_bindings.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
#include "pybind11/stl_bind.h"
#include "torch_xla/csrc/XLANativeFunctions.h"
#include "torch_xla/csrc/aten_autograd_ops.h"
#include "torch_xla/csrc/aten_cpu_fallback.h"
#include "torch_xla/csrc/aten_xla_bridge.h"
#include "torch_xla/csrc/device.h"
#include "torch_xla/csrc/dl_convertor.h"
Expand Down Expand Up @@ -1781,6 +1782,7 @@ void InitXlaModuleBindings(py::module m) {
}
},
py::arg("devices"));
m.def("_get_executed_fallback_ops", []() { return GetFallbackOperations(); });
m.def("_xla_counter_names", []() {
auto counter_names = torch::lazy::GetCounterNames();
auto xla_counter_names = runtime::metrics::GetCounterNames();
Expand Down
5 changes: 5 additions & 0 deletions torch_xla/debug/metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,3 +79,8 @@ def short_metrics_report(counter_names: list = None, metric_names: list = None):
'TransferToDeviceTime', 'TransferFromDeviceTime'
]
return torch_xla._XLAC._short_xla_metrics_report(counter_names, metric_names)


def executed_fallback_ops():
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

cc @alanwaketan we can start using this new api which is better than do a string assertIn from the metrics_report,

"""Retrieves a list of operations that were run in fallback mode."""
return torch_xla._XLAC._get_executed_fallback_ops()
Loading