Skip to content

Commit

Permalink
Merge pull request #601 from BENR0/feat_html_repr
Browse files Browse the repository at this point in the history
Fix spill over of ocean/and features in cartopy plots in case of geostationary full disc plot.
  • Loading branch information
djhoese committed Jul 30, 2024
2 parents c957997 + 9bf142c commit 70b37ab
Show file tree
Hide file tree
Showing 2 changed files with 87 additions and 24 deletions.
36 changes: 12 additions & 24 deletions pyresample/_formatting_html.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
import numpy as np

import pyresample.geometry as geom
from pyresample.utils.proj4 import ignore_pyproj_proj_warnings

try:
import cartopy
Expand Down Expand Up @@ -65,15 +66,11 @@ def _icon(icon_name):


def plot_area_def(area: Union['geom.AreaDefinition', 'geom.SwathDefinition'], # noqa F821
feature_res: Optional[str] = "110m",
fmt: Optional[Literal["svg", "png", None]] = None) -> Union[str, None]:
"""Plot area.
Args:
area : Area/Swath to plot.
feature_res :
Resolution of the features added to the map. Argument is handed over
to `scale` parameter in cartopy.feature.
fmt : Output format of the plot. The output is the string representation of
the respective format xml for svg and base64 for png. Either svg or png.
If None (default) plot is just shown.
Expand Down Expand Up @@ -102,21 +99,10 @@ def plot_area_def(area: Union['geom.AreaDefinition', 'geom.SwathDefinition'], #
bounds = poly.buffer(5).bounds
ax.set_extent([bounds[0], bounds[2], bounds[1], bounds[3]], crs=cartopy.crs.CRS(area.crs))

coastlines = cartopy.feature.NaturalEarthFeature(category="physical",
name="coastline",
scale=feature_res,
linewidth=1,
facecolor="never")
borders = cartopy.feature.NaturalEarthFeature(category="cultural",
name="admin_0_boundary_lines_land", # noqa E114
scale=feature_res,
edgecolor="black",
facecolor="never") # noqa E1>
ocean = cartopy.feature.OCEAN

ax.add_feature(borders)
ax.add_feature(coastlines)
ax.add_feature(ocean, color="lightgrey")
ax.add_feature(cartopy.feature.OCEAN)
ax.add_feature(cartopy.feature.LAND)
ax.add_feature(cartopy.feature.COASTLINE)
ax.add_feature(cartopy.feature.BORDERS)

plt.tight_layout(pad=0)

Expand Down Expand Up @@ -208,7 +194,8 @@ def proj_area_attrs_section(area: 'geom.AreaDefinition') -> str: # noqa F821
"""
resolution_str = "/".join([str(round(x, 1)) for x in area.resolution])
proj_dict = area.proj_dict
with ignore_pyproj_proj_warnings():
proj_dict = area.proj_dict
proj_str = "{{{}}}".format(", ".join(["'%s': '%s'" % (str(k), str(proj_dict[k])) for k in
sorted(proj_dict.keys())]))
area_units = proj_dict.get("units", "")
Expand All @@ -222,7 +209,7 @@ def proj_area_attrs_section(area: 'geom.AreaDefinition') -> str: # noqa F821
f"<dt>Width/Height</dt><dd>{area.width}/{area.height} Pixel</dd>"
f"<dt>Resolution x/y (SSP)</dt><dd>{resolution_str} {area_units}</dd>"
f"<dt>Extent (ll_x, ll_y, ur_x, ur_y)</dt>"
f"<dd>{tuple(round(x, 4) for x in area.area_extent)}</dd>"
f"<dd>{tuple(round(float(x), 4) for x in area.area_extent)}</dd>"
"</dl>"
)

Expand Down Expand Up @@ -319,14 +306,15 @@ def swath_area_attrs_section(area: 'geom.SwathDefinition') -> str: # noqa F821
return f"{coll}"


def area_repr(area: Union['geom.AreaDefinition', 'geom.SwathDefinition'], include_header: Optional[bool] = True, # noqa F821
include_static_files: Optional[bool] = True):
def area_repr(area: Union['geom.AreaDefinition', 'geom.SwathDefinition'],
include_header: bool = True,
include_static_files: bool = True):
"""Return html repr of an AreaDefinition.
Args:
area : Area definition.
include_header : If true a header with object type will be included in
the html. This is mainly intented for display in Jupyter Notebooks. For the
the html. This is mainly intended for display in Jupyter Notebooks. For the
display in the overview of area definitions for the Satpy documentation this
should be set to false.
include_static_files : Load and include css and html needed for representation.
Expand Down
75 changes: 75 additions & 0 deletions pyresample/utils/cartopy.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
DataArray = np.ndarray

import cartopy.crs as ccrs
import shapely.geometry as sgeom


class Projection(ccrs.Projection):
Expand Down Expand Up @@ -69,3 +70,77 @@ def __init__(self,
if self.bounds is not None:
x0, x1, y0, y1 = self.bounds
self.threshold = min(abs(x1 - x0), abs(y1 - y0)) / 100.

# For geostationary full disc the boundary needs to be the actuall boundary of the earth disc otherwise
# when ocean or land features are added to the cartopy plot these spill over.
if "Geostationary Satellite" not in crs.to_wkt():
self._boundary = super().boundary
else:
self._boundary = self._geos_boundary()

@staticmethod
def _geos_boundary():
"""Calculate full disk boundary.
This code is copied over from the 'Geostationary' class in 'cartopy/lib/cartopy/crs.py'.
"""
satellite_height = 35785831
false_easting = 0
false_northing = 0
a = float(ccrs.WGS84_SEMIMAJOR_AXIS)
b = float(ccrs.WGS84_SEMIMINOR_AXIS)
h = float(satellite_height)

# To find the bound we trace around where the line from the satellite
# is tangent to the surface. This involves trigonometry on a sphere
# centered at the satellite. The two scanning angles form two legs of
# triangle on this sphere--the hypotenuse "c" (angle arc) is controlled
# by distance from center to the edge of the ellipse being seen.

# This is one of the angles in the spherical triangle and used to
# rotate around and "scan" the boundary
angleA = np.linspace(0, -2 * np.pi, 91) # Clockwise boundary.

# Convert the angle around center to the proper value to use in the
# parametric form of an ellipse
th = np.arctan(a / b * np.tan(angleA))

# Given the position on the ellipse, what is the distance from center
# to the ellipse--and thus the tangent point
r = np.hypot(a * np.cos(th), b * np.sin(th))
sat_dist = a + h

# Using this distance, solve for sin and tan of c in the triangle that
# includes the satellite, Earth center, and tangent point--we need to
# figure out the location of this tangent point on the elliptical
# cross-section through the Earth towards the satellite, where the
# major axis is a and the minor is r. With the ellipse centered on the
# Earth and the satellite on the y-axis (at y = a + h = sat_dist), the
# equation for an ellipse and some calculus gives us the tangent point
# (x0, y0) as:
# y0 = a**2 / sat_dist
# x0 = r * np.sqrt(1 - a**2 / sat_dist**2)
# which gives:
# sin_c = x0 / np.hypot(x0, sat_dist - y0)
# tan_c = x0 / (sat_dist - y0)
# A bit of algebra combines these to give directly:
sin_c = r / np.sqrt(sat_dist ** 2 - a ** 2 + r ** 2)
tan_c = r / np.sqrt(sat_dist ** 2 - a ** 2)

# Using Napier's rules for right spherical triangles R2 and R6,
# (See https://en.wikipedia.org/wiki/Spherical_trigonometry), we can
# solve for arc angles b and a, which are our x and y scanning angles,
# respectively.
coords = np.vstack([np.arctan(np.cos(angleA) * tan_c), # R6
np.arcsin(np.sin(angleA) * sin_c)]) # R2

# Need to multiply scanning angles by satellite height to get to the
# actual native coordinates for the projection.
coords *= h
coords += np.array([[false_easting], [false_northing]])
return sgeom.LinearRing(coords.T)

@property
def boundary(self):
"""Return boundary."""
return self._boundary

0 comments on commit 70b37ab

Please sign in to comment.