Skip to content

Commit

Permalink
fix: various improvements to tests
Browse files Browse the repository at this point in the history
  • Loading branch information
BrunoLiegiBastonLiegi committed Nov 22, 2024
1 parent d3b0a5e commit b7c0f2e
Show file tree
Hide file tree
Showing 4 changed files with 13 additions and 12 deletions.
5 changes: 2 additions & 3 deletions src/qiboml/models/encoding.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,6 @@ def __call__(self, x: ndarray) -> Circuit:
f"Invalid input dimension {x.shape[-1]}, but the allocated qubits are {self.qubits}.",
)
circuit = self.circuit.copy()
ones = np.flatnonzero(x.ravel() == 1)
for bit in ones:
circuit.add(gates.X(self.qubits[bit]))
for qubit, bit in zip(self.qubits, x.ravel()):
circuit.add(gates.RX(qubit, theta=bit * np.pi, trainable=False))
return circuit
1 change: 0 additions & 1 deletion tests/.#test_models_interfaces.py

This file was deleted.

4 changes: 2 additions & 2 deletions tests/test_models_encoding.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,8 @@ def test_binary_encoding_layer(backend):
layer = ed.BinaryEncoding(nqubits, qubits=qubits)
data = backend.cast(np.random.choice([0, 1], size=(len(qubits),)))
c = layer(data)
indices = [gate.qubits[0] for gate in c.queue if gate.name == "x"]
assert [qubits[i] for i in np.flatnonzero(data == 1)] == indices
for bit, gate in zip(data, c.queue):
assert bit == gate.init_kwargs["theta"] / np.pi
# test shape error
with pytest.raises(RuntimeError):
layer(backend.cast(np.random.choice([0, 1], size=(len(qubits) - 1,))))
Expand Down
15 changes: 9 additions & 6 deletions tests/test_models_interfaces.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ def random_tensor(frontend, shape, binary=False):


def train_model(frontend, model, data, target):
max_epochs = 30
max_epochs = 10
if frontend.__name__ == "qiboml.models.pytorch":

optimizer = frontend.torch.optim.Adam(model.parameters())
Expand Down Expand Up @@ -168,7 +168,10 @@ def random_parameters(frontend, model):
if frontend.__name__ == "qiboml.models.pytorch":
new_params = {}
for k, v in model.state_dict().items():
new_params.update({k: v + frontend.torch.randn(v.shape) / 2})
new_params.update(
{k: v + frontend.torch.randn(v.shape) / 5}
) # perturbation of max +- 0.2
# of the original parameters
elif frontend.__name__ == "qiboml.models.keras":
new_params = [frontend.tf.random.uniform(model.get_weights()[0].shape)]
return new_params
Expand Down Expand Up @@ -230,11 +233,11 @@ def test_encoding(backend, frontend, layer, seed):
target = prepare_targets(frontend, q_model, data)
backprop_test(frontend, q_model, data, target)

data = random_tensor(frontend, (100, 32))
data = random_tensor(frontend, (100, 4))
model = build_sequential_model(
frontend,
[
build_linear_layer(frontend, 32, dim),
build_linear_layer(frontend, 4, dim),
q_model,
build_linear_layer(frontend, 2**nqubits, 1),
],
Expand Down Expand Up @@ -290,12 +293,12 @@ def test_decoding(backend, frontend, layer, seed, analytic):
model = build_sequential_model(
frontend,
[
build_linear_layer(frontend, 32, dim),
build_linear_layer(frontend, 4, dim),
q_model,
build_linear_layer(frontend, q_model.output_shape[-1], 1),
],
)

data = random_tensor(frontend, (100, 32))
data = random_tensor(frontend, (100, 4))
target = prepare_targets(frontend, model, data)
backprop_test(frontend, model, data, target)

0 comments on commit b7c0f2e

Please sign in to comment.