Skip to content

Code for our ICLR 2023 paper Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples.

Notifications You must be signed in to change notification settings

qizhangli/MoreBayesian-attack

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MoreBayesian-attack

Code for our ICLR 2023 paper Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples.

Requirements

  • Python 3.8.8
  • PyTorch 1.12.0
  • Torchvision 0.13.0

Datasets

Select images from ImageNet validation set, and write .csv file as following:

class_index, class, image_name
0,n01440764,ILSVRC2012_val_00002138.JPEG
2,n01484850,ILSVRC2012_val_00004329.JPEG
...

Finetune, Attack, and Evaluate

Finetune

Perform our finetune with SWAG:

python3 finetune.py --data_path ${IMAGENET_DIR} --save-dir ${MODEL_SAVE_DIR}

You can download our finetuned ResNet-50 at Google Drive.

Attack

Perform attack:

python3 attack.py --source-model-dir ${SOURCE_MODEL_DIR} --data-dir ${IMAGENET_VAL_DIR} --data-info-dir ${DATASET_CSV_FILE} --save-dir ${ADV_IMG_SAVE_DIR}

Evaluate

Evaluate the success rate of adversarial examples:

python3 test.py --dir ${ADV_IMG_SAVE_DIR} --model_dir ${VICTIM_MODEL_WEIGHTS_DIR}

Acknowledgements

The following resources are very helpful for our work:

Citation

Please cite our work in your publications if it helps your research:

@article{li2023making,
  title={Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples},
  author={Li, Qizhang and Guo, Yiwen and Zuo, Wangmeng and Chen, Hao},
  booktitle={ICLR},
  year={2023}
}

About

Code for our ICLR 2023 paper Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages