-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
221 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
all: | ||
gfortran -llapack -lblas -shared ./funclib.f90 -o funclib.so |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
import ctypes as ct | ||
import ctypes | ||
import numpy as np | ||
|
||
from ctypes import CDLL, POINTER, c_int, c_double, c_bool | ||
|
||
# import the shared library | ||
fortlib = ct.CDLL('./funclib.so') | ||
|
||
c_float_p = ctypes.POINTER(ctypes.c_float) | ||
c_integer_p = ctypes.POINTER(ctypes.c_int) | ||
c_bool_p = ctypes.POINTER(ctypes.c_bool) | ||
|
||
# Specify arguments and result types | ||
fortlib.sum2.argtypes = [ct.POINTER(ct.c_double)] | ||
fortlib.sum2.restype = ct.c_double | ||
|
||
# fortlib.fkpca.argtypes = [ct.POINTER(ct.c_double)] | ||
# fortlib.fkpca.restype = ct.c_double | ||
|
||
|
||
def kpca(K, n=2, centering=True): | ||
"""Calculates `n` first principal components for the kernel :math:`K`. | ||
The PCA is calculated using an OpenMP parallel Fortran routine. | ||
A square, symmetric kernel matrix is required. Centering of the kernel matrix | ||
is enabled by default, although this isn't a strict requirement. | ||
:param K: 2D kernel matrix | ||
:type K: numpy array | ||
:param n: Number of kernel PCAs to return (default=2) | ||
:type n: integer | ||
:param centering: Whether to center the kernel matrix (default=True) | ||
:type centering: bool | ||
:return: array containing the principal components | ||
:rtype: numpy array | ||
""" | ||
|
||
assert K.shape[0] == K.shape[1], "ERROR: Square matrix required for Kernel PCA." | ||
assert np.allclose(K, K.T, atol=1e-8), "ERROR: Symmetric matrix required for Kernel PCA." | ||
assert n <= K.shape[0], "ERROR: Requested more principal components than matrix size." | ||
|
||
size = K.shape[0] | ||
print("K", list(K)) | ||
|
||
result = np.zeros((size, size), dtype="double") | ||
print("result", list(result)) | ||
|
||
|
||
fortlib.fkpca(K.ctypes.data_as(POINTER(c_double)), ctypes.byref(c_int(size)), ctypes.byref(c_bool(centering)), result.ctypes.data_as(POINTER(c_double))) | ||
|
||
|
||
print("result", list(result)) | ||
|
||
# pca = fortlib.fkpca(K.ctypes.data_as(c_float_p), ctypes.c_int(size), ctypes.c_bool(centering)) | ||
# print(pca) | ||
|
||
# return pca[:n] | ||
|
||
if __name__ == "__main__": | ||
|
||
a = ct.c_double(5) | ||
b = fortlib.sum2(ct.byref(a)) | ||
print("sum function", b == 7.0) | ||
|
||
# | ||
x = np.array([[2, 1], [1, 2]], dtype="double") | ||
|
||
N = 3 | ||
a = np.random.rand(N, N) | ||
kernel = np.tril(a) + np.tril(a, -1).T | ||
|
||
print(x) | ||
pca = kpca(kernel) | ||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
module funclib | ||
|
||
use iso_c_binding, only: c_double, c_int, c_bool | ||
implicit none | ||
|
||
contains | ||
|
||
function sum2(a) result(b) bind(c, name='sum2') | ||
|
||
use iso_c_binding | ||
implicit none | ||
|
||
real(c_double), intent(in) :: a | ||
real(c_double) :: b | ||
|
||
b = a + 2.d0 | ||
|
||
end function sum2 | ||
|
||
subroutine fkpca(k, n, centering, kpca) bind(c) | ||
|
||
implicit none | ||
|
||
real(c_double), intent(in) :: k(n, n) | ||
integer(c_int), intent(in) :: n | ||
logical(c_bool), intent(in) :: centering | ||
real(c_double), intent(out) :: kpca(n, n) | ||
|
||
! Eigenvalues | ||
real, dimension(n) :: eigenvals | ||
|
||
real, allocatable, dimension(:) :: work | ||
|
||
integer :: lwork | ||
integer :: info | ||
|
||
integer :: i | ||
|
||
real :: inv_n | ||
real, allocatable, dimension(:) :: temp | ||
real :: temp_sum | ||
|
||
write(*,*) "hello world" | ||
|
||
kpca(:, :) = k(:, :) | ||
|
||
write(*,*) "hello world" | ||
write(*,*) kpca | ||
write(*,*) k | ||
write(*,*) "hello world" | ||
|
||
! This first part centers the matrix, | ||
! basically Kpca = K - G@K - K@G + G@K@G, with G = 1/n | ||
! It is a bit hard to follow, sry, but it is very fast | ||
! and requires very little memory overhead. | ||
|
||
if (centering) then | ||
|
||
write(*,*) "Should be false" | ||
|
||
inv_n = 1.0d0/n | ||
|
||
allocate (temp(n)) | ||
temp(:) = 0.0d0 | ||
|
||
!$OMP PARALLEL DO | ||
do i = 1, n | ||
temp(i) = sum(k(i, :))*inv_n | ||
end do | ||
!$OMP END PARALLEL DO | ||
|
||
temp_sum = sum(temp(:))*inv_n | ||
|
||
!$OMP PARALLEL DO | ||
do i = 1, n | ||
kpca(i, :) = kpca(i, :) + temp_sum | ||
end do | ||
!$OMP END PARALLEL DO | ||
|
||
!$OMP PARALLEL DO | ||
do i = 1, n | ||
kpca(:, i) = kpca(:, i) - temp(i) | ||
end do | ||
!$OMP END PARALLEL DO | ||
|
||
!$OMP PARALLEL DO | ||
do i = 1, n | ||
kpca(i, :) = kpca(i, :) - temp(i) | ||
end do | ||
!$OMP END PARALLEL DO | ||
|
||
deallocate (temp) | ||
|
||
end if | ||
|
||
! This 2nd part solves the eigenvalue problem with the least | ||
! memory intensive solver, namely DSYEV(). DSYEVD() is twice | ||
! as fast, but requires a lot more memory, which quickly | ||
! becomes prohibitive. | ||
|
||
! Dry run which returns the optimal "lwork" | ||
allocate (work(1)) | ||
call dsyev("V", "U", n, kpca, n, eigenvals, work, -1, info) | ||
lwork = nint(work(1)) + 1 | ||
deallocate (work) | ||
|
||
write(*,*) "what is l work" | ||
write(*,*) lwork | ||
|
||
! Get eigenvectors | ||
allocate (work(lwork)) | ||
call dsyev("V", "U", n, kpca, n, eigenvals, work, lwork, info) | ||
deallocate (work) | ||
|
||
if (info < 0) then | ||
|
||
write (*, *) "ERROR: The ", -info, "-th argument to DSYEV() had an illegal value." | ||
|
||
else if (info > 0) then | ||
|
||
write (*, *) "ERROR: DSYEV() failed to compute an eigenvalue." | ||
|
||
end if | ||
|
||
! This 3rd part sorts the kernel PCA matrix such that the first PCA is kpca(1) | ||
kpca = kpca(:, n:1:-1) | ||
kpca = transpose(kpca) | ||
|
||
!$OMP PARALLEL DO | ||
do i = 1, n | ||
kpca(i, :) = kpca(i, :)*sqrt(eigenvals(n - i + 1)) | ||
end do | ||
!$OMP END PARALLEL DO | ||
|
||
|
||
end subroutine fkpca | ||
|
||
end module |