-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
S4 ellipsometry parameter calculation
- Loading branch information
Showing
1 changed file
with
197 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
from rayflare.rigorous_coupled_wave_analysis import rcwa_structure | ||
from rayflare.rigorous_coupled_wave_analysis.rcwa import initialise_S | ||
from rayflare.options import default_options | ||
from solcore import material | ||
from solcore.structure import Layer | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
||
Si = material('Si')() | ||
Air = material('Air')() | ||
size = ((700, 0), (0, 700)) # 700 nm square unit cell (doesn't matter for planar layers) | ||
|
||
layers = [] | ||
|
||
options = default_options() | ||
options.wavelength = np.linspace(300, 1000, 60) * 1e-9 | ||
orders = 2 | ||
|
||
rcwa_strt = rcwa_structure(layers, size, options, Air, Si) | ||
|
||
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8)) | ||
|
||
for angle in [45, 55, 65]: | ||
r_s = np.zeros_like(options.wavelength, dtype=complex) | ||
r_p = np.zeros_like(options.wavelength, dtype=complex) | ||
|
||
for wl_ind, wl in enumerate(options.wavelength): | ||
|
||
S = initialise_S(rcwa_strt.size, orders, rcwa_strt.geom_list, rcwa_strt.layers_oc[wl_ind], | ||
rcwa_strt.shapes_oc[wl_ind], rcwa_strt.shapes_names, rcwa_strt.widths, | ||
options.S4_options) | ||
actual_orders = len(S.GetBasisSet()) # get the actual number of orders S4 chose to use | ||
S.SetExcitationPlanewave((angle, 0), 1, 0, 0) | ||
S.SetFrequency(1 / wl) | ||
|
||
(forw, back) = S.GetAmplitudes('layer_1') | ||
|
||
# this isn't clear in the document, but I think this is indexed as: for N orders, | ||
# the first N elements in "forw" are the forward-travelling E-field amplitudes in each | ||
# order, while the elements N:end are the H-field amplitudes (similarly for "back", but | ||
# for the backwards-travelling E and H field amplitudes). | ||
|
||
r_s[wl_ind] = back[0]/forw[0] | ||
|
||
S = initialise_S(rcwa_strt.size, actual_orders, rcwa_strt.geom_list, rcwa_strt.layers_oc[wl_ind], | ||
rcwa_strt.shapes_oc[wl_ind], rcwa_strt.shapes_names, rcwa_strt.widths, | ||
options.S4_options) | ||
S.SetExcitationPlanewave((angle, 0), 0, 1, 0) | ||
S.SetFrequency(1 / wl) | ||
(forw, back) = S.GetAmplitudes('layer_1') | ||
|
||
# E field amplitudes are zero for p-polarised light, need to use H field amplitudes | ||
H_forw = forw[actual_orders:] | ||
H_back = back[actual_orders:] | ||
|
||
r_p[wl_ind] = H_back[0]/H_forw[0] | ||
|
||
# Fresnel equations: | ||
|
||
n1 = np.sqrt(rcwa_strt.layers_oc[:,0]) | ||
n2 = np.sqrt(rcwa_strt.layers_oc[:,1]) | ||
|
||
theta_t = np.arcsin(n1*np.sin(angle*np.pi/180)/n2) | ||
|
||
r_s_F = (n1*np.cos(angle*np.pi/180) - n2*np.cos(theta_t)) / (n1*np.cos(angle*np.pi/180) + n2*np.cos(theta_t)) | ||
r_p_F = (n2*np.cos(angle*np.pi/180) - n1*np.cos(theta_t)) / (n2*np.cos(angle*np.pi/180) + n1*np.cos(theta_t)) | ||
|
||
rho = r_p/r_s | ||
|
||
rho_F = r_p_F/r_s_F | ||
|
||
rho_mag = np.abs(rho) | ||
delta = np.angle(rho) | ||
psi = np.arctan(rho_mag) | ||
|
||
rho_mag_F = np.abs(rho_F) | ||
delta_F = np.angle(rho_F) | ||
psi_F = np.arctan(rho_mag_F) | ||
|
||
ax1.plot(options.wavelength*1e9, 180*rho_mag/np.pi, label=str(angle) + ' (RCWA)') | ||
ax2.plot(options.wavelength*1e9, 180 - delta*180/np.pi) | ||
# not completely sure why I need to do 180 - angle (or take the negative below for rho) | ||
|
||
ax1.plot(options.wavelength*1e9, 180*rho_mag_F/np.pi, '--', label=str(angle) + ' (Fresnel)') | ||
ax2.plot(options.wavelength*1e9, -delta_F*180/np.pi, '--') | ||
|
||
ax1.legend() | ||
ax1.set_ylabel('Psi (degrees)') | ||
ax2.set_ylabel('Delta (degrees)') | ||
ax2.set_xlabel('Wavelength (nm)') | ||
ax1.set_title('Planar Air/Si') | ||
plt.show() | ||
|
||
r_s_65 = r_s | ||
r_p_65 = r_p | ||
|
||
# try it with some kind of grating | ||
|
||
Si = material('Si')() | ||
Air = material('Air')() | ||
|
||
layers = [Layer(1e-6, Si, | ||
geometry=[{"type": "rectangle", "mat": Air, | ||
"center": (500, 500), "halfwidths": (100, 100), "angle": 45}])] | ||
|
||
orders = 60 | ||
|
||
rcwa_strt = rcwa_structure(layers, size, options, Air, Si) | ||
|
||
fig2, (ax1, ax2) = plt.subplots(2, 1, figsize=(8, 8)) | ||
|
||
for angle in [45, 55, 65]: | ||
r_s = np.zeros_like(options.wavelength, dtype=complex) | ||
r_p = np.zeros_like(options.wavelength, dtype=complex) | ||
|
||
for wl_ind, wl in enumerate(options.wavelength): | ||
S = initialise_S(rcwa_strt.size, orders, rcwa_strt.geom_list, rcwa_strt.layers_oc[wl_ind], | ||
rcwa_strt.shapes_oc[wl_ind], rcwa_strt.shapes_names, rcwa_strt.widths, | ||
options.S4_options) | ||
actual_orders = len(S.GetBasisSet()) | ||
S.SetExcitationPlanewave((angle, 0), 1, 0, 0) | ||
S.SetFrequency(1 / wl) | ||
|
||
(forw, back) = S.GetAmplitudes('layer_1') | ||
|
||
# this isn't clear in the document, but I think this is indexed as: for N orders, | ||
# the first N elements in "forw" are the forward-travelling E-field amplitudes in each | ||
# order, while the elements N:end are the H-field amplitudes (similarly for "back", but | ||
# for the backwards-travelling E and H field amplitudes). | ||
|
||
r_s[wl_ind] = back[0] / forw[0] | ||
|
||
S = initialise_S(rcwa_strt.size, actual_orders, rcwa_strt.geom_list, rcwa_strt.layers_oc[wl_ind], | ||
rcwa_strt.shapes_oc[wl_ind], rcwa_strt.shapes_names, rcwa_strt.widths, | ||
options.S4_options) | ||
S.SetExcitationPlanewave((angle, 0), 0, 1, 0) | ||
S.SetFrequency(1 / wl) | ||
(forw, back) = S.GetAmplitudes('layer_1') | ||
|
||
# E field amplitudes are zero for p-polarised light, need to use H field amplitudes | ||
H_forw = forw[actual_orders:] | ||
H_back = back[actual_orders:] | ||
|
||
r_p[wl_ind] = H_back[0] / H_forw[0] | ||
|
||
# Fresnel equations: | ||
|
||
n1 = np.sqrt(rcwa_strt.layers_oc[:, 0]) | ||
n2 = np.sqrt(rcwa_strt.layers_oc[:, 2]) | ||
|
||
theta_t = np.arcsin(n1 * np.sin(angle * np.pi / 180) / n2) | ||
|
||
r_s_F = (n1 * np.cos(angle * np.pi / 180) - n2 * np.cos(theta_t)) / ( | ||
n1 * np.cos(angle * np.pi / 180) + n2 * np.cos(theta_t)) | ||
r_p_F = (n2 * np.cos(angle * np.pi / 180) - n1 * np.cos(theta_t)) / ( | ||
n2 * np.cos(angle * np.pi / 180) + n1 * np.cos(theta_t)) | ||
|
||
rho = r_p / r_s | ||
|
||
rho_F = r_p_F / r_s_F | ||
|
||
rho_mag = np.abs(rho) | ||
delta = np.angle(rho) | ||
psi = np.arctan(rho_mag) | ||
|
||
rho_mag_F = np.abs(rho_F) | ||
delta_F = np.angle(rho_F) | ||
psi_F = np.arctan(rho_mag_F) | ||
|
||
ax1.plot(options.wavelength * 1e9, 180 * rho_mag / np.pi, label=str(angle) + ' (RCWA)') | ||
ax2.plot(options.wavelength * 1e9, 180 - delta * 180 / np.pi) | ||
|
||
ax1.plot(options.wavelength * 1e9, 180 * rho_mag_F / np.pi, '--', | ||
label=str(angle) + ' (Fresnel)') | ||
ax2.plot(options.wavelength * 1e9, -delta_F * 180 / np.pi, '--') | ||
|
||
ax1.legend() | ||
ax1.set_ylabel('Psi (degrees)') | ||
ax2.set_ylabel('Delta (degrees)') | ||
ax2.set_xlabel('Wavelength (nm)') | ||
ax1.set_title('Air/Si with grating') | ||
plt.show() | ||
|
||
r_s_65_grating = r_s | ||
r_p_65_grating = r_p | ||
|
||
R_zeroorder_nograting = 0.5*(np.abs(r_s_65)**2 + np.abs(r_p_65)**2) | ||
R_zeroorder_grating = 0.5*(np.abs(r_s_65_grating)**2 + np.abs(r_p_65_grating)**2) | ||
|
||
plt.figure() | ||
plt.plot(options.wavelength*1e9, R_zeroorder_nograting, label='Planar') | ||
plt.plot(options.wavelength*1e9, R_zeroorder_grating, '--', label='Grating') | ||
plt.legend() | ||
plt.xlabel('Wavelength (nm)') | ||
plt.ylabel('R (zeroth order)') | ||
plt.show() | ||
|