Pika is a RabbitMQ (AMQP 0-9-1) client library for Python.
Pika is a pure-Python implementation of the AMQP 0-9-1 protocol including RabbitMQ's extensions.
- Python 2.7 and 3.4+ are supported.
- Since threads aren't appropriate to every situation, it doesn't require threads. Pika core takes care not to forbid them, either. The same goes for greenlets, callbacks, continuations, and generators. An instance of Pika's built-in connection adapters isn't thread-safe, however.
- People may be using direct sockets, plain old
select()
, or any of the wide variety of ways of getting network events to and from a Python application. Pika tries to stay compatible with all of these, and to make adapting it to a new environment as simple as possible.
Pika's documentation can be found at https://pika.readthedocs.io.
Here is the most simple example of use, sending a message with the
pika.BlockingConnection
adapter:
import pika
connection = pika.BlockingConnection()
channel = connection.channel()
channel.basic_publish(exchange='test', routing_key='test',
body=b'Test message.')
connection.close()
And an example of writing a blocking consumer:
import pika
connection = pika.BlockingConnection()
channel = connection.channel()
for method_frame, properties, body in channel.consume('test'):
# Display the message parts and acknowledge the message
print(method_frame, properties, body)
channel.basic_ack(method_frame.delivery_tag)
# Escape out of the loop after 10 messages
if method_frame.delivery_tag == 10:
break
# Cancel the consumer and return any pending messages
requeued_messages = channel.cancel()
print('Requeued %i messages' % requeued_messages)
connection.close()
pika.adapters.asyncio_connection.AsyncioConnection
- asynchronous adapter for Python 3 AsyncIO's I/O loop.pika.BlockingConnection
- synchronous adapter on top of library for simple usage.pika.SelectConnection
- asynchronous adapter without third-party dependencies.pika.adapters.tornado_connection.TornadoConnection
- asynchronous adapter for use with Tornado's I/O loop.pika.adapters.twisted_connection.TwistedProtocolConnection
- asynchronous adapter for use with Twisted's I/O loop.
You can also pass multiple pika.ConnectionParameters
instances for
fault-tolerance as in the code snippet below (host names are just examples, of
course). To enable retries, set connection_attempts
and retry_delay
as
needed in the last pika.ConnectionParameters
element of the sequence.
Retries occur after connection attempts using all of the given connection
parameters fail.
import pika
parameters = (
pika.ConnectionParameters(host='rabbitmq.zone1.yourdomain.com'),
pika.ConnectionParameters(host='rabbitmq.zone2.yourdomain.com',
connection_attempts=5, retry_delay=1))
connection = pika.BlockingConnection(parameters)
With non-blocking adapters, such as pika.SelectConnection
and
pika.adapters.asyncio_connection.AsyncioConnection
, you can request a
connection using multiple connection parameter instances via the connection
adapter's create_connection()
class method.
The single-threaded usage constraint of an individual Pika connection adapter instance may result in a dropped AMQP/stream connection due to AMQP heartbeat timeout in consumers that take a long time to process an incoming message. A common solution is to delegate processing of the incoming messages to another thread, while the connection adapter's thread continues to service its I/O loop's message pump, permitting AMQP heartbeats and other I/O to be serviced in a timely fashion.
Messages processed in another thread may not be acknowledged directly from that thread, since all accesses to the connection adapter instance must be from a single thread, which is the thread running the adapter's I/O loop. This is accomplished by requesting a callback to be executed in the adapter's I/O loop thread. For example, the callback function's implementation might look like this:
def ack_message(channel, delivery_tag):
"""Note that `channel` must be the same Pika channel instance via which
the message being acknowledged was retrieved (AMQP protocol constraint).
"""
if channel.is_open:
channel.basic_ack(delivery_tag)
else:
# Channel is already closed, so we can't acknowledge this message;
# log and/or do something that makes sense for your app in this case.
pass
The code running in the other thread may request the ack_message()
function
to be executed in the connection adapter's I/O loop thread using an
adapter-specific mechanism:
pika.BlockingConnection
abstracts its I/O loop from the application and thus exposespika.BlockingConnection.add_callback_threadsafe()
. Refer to this method's docstring for additional information. For example:connection.add_callback_threadsafe(functools.partial(ack_message, channel, delivery_tag))
When using a non-blocking connection adapter, such as
pika.adapters.asyncio_connection.AsyncioConnection
orpika.SelectConnection
, you use the underlying asynchronous framework's native API for requesting an I/O loop-bound callback from another thread. For example,pika.SelectConnection
's I/O loop providesadd_callback_threadsafe()
,pika.adapters.tornado_connection.TornadoConnection
's I/O loop hasadd_callback()
, whilepika.adapters.asyncio_connection.AsyncioConnection
's I/O loop exposescall_soon_threadsafe()
.
This threadsafe callback request mechanism may also be used to delegate publishing of messages, etc., from a background thread to the connection adapter's thread.
Some RabbitMQ clients (Bunny, Java, .NET, Objective-C, Swift) provide a way to automatically recover connection, its channels and topology (e.g. queues, bindings and consumers) after a network failure. Others require connection recovery to be performed by the application code and strive to make it a straightforward process. Pika falls into the second category.
Pika supports multiple connection adapters. They take different approaches to connection recovery.
For pika.BlockingConnection
adapter exception handling can be used to check
for connection errors. Here is a very basic example:
import pika
while True:
try:
connection = pika.BlockingConnection()
channel = connection.channel()
channel.basic_consume('test', on_message_callback)
channel.start_consuming()
# Don't recover if connection was closed by broker
except pika.exceptions.ConnectionClosedByBroker:
break
# Don't recover on channel errors
except pika.exceptions.AMQPChannelError:
break
# Recover on all other connection errors
except pika.exceptions.AMQPConnectionError:
continue
This example can be found in examples/consume_recover.py.
Generic operation retry libraries such as retry can be used. Decorators make it possible to configure some additional recovery behaviours, like delays between retries and limiting the number of retries:
from retry import retry
@retry(pika.exceptions.AMQPConnectionError, delay=5, jitter=(1, 3))
def consume():
connection = pika.BlockingConnection()
channel = connection.channel()
channel.basic_consume('test', on_message_callback)
try:
channel.start_consuming()
# Don't recover connections closed by server
except pika.exceptions.ConnectionClosedByBroker:
pass
consume()
This example can be found in examples/consume_recover_retry.py.
For asynchronous adapters, use on_close_callback
to react to connection
failure events. This callback can be used to clean up and recover the
connection.
An example of recovery using on_close_callback
can be found in
examples/asynchronous_consumer_example.py.
To contribute to Pika, please make sure that any new features or changes to existing functionality include test coverage.
Pull requests that add or change code without adequate test coverage will be rejected.
Additionally, please format your code using
Yapf with google
style prior to
issuing your pull request. Note: only format those lines that you have changed
in your pull request. If you format an entire file and change code outside of
the scope of your PR, it will likely be rejected.
New non-blocking adapters may be implemented in either of the following ways:
- By subclassing
pika.BaseConnection
, implementing its abstract method and passing its constructor an implementation ofpika.adapters.utils.nbio_interface.AbstractIOServices
.pika.BaseConnection
implementspika.connection.Connection
's abstract methods, including internally-initiated connection logic. For examples, refer to the implementations ofpika.adapters.asyncio_connection.AsyncioConnection
andpika.adapters.tornado_connection.TornadoConnection
. - By subclassing
pika.connection.Connection
and implementing its abstract methods. This approach facilitates implementation of custom connection-establishment and transport mechanisms. For an example, refer to the implementation ofpika.adapters.twisted_connection.TwistedProtocolConnection
.