Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

SelectSwapQROM revamp and upgrades #986

Merged
merged 12 commits into from
May 28, 2024
Merged
Show file tree
Hide file tree
Changes from 10 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions dev_tools/autogenerate-bloqs-notebooks-v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,7 @@
import qualtran.bloqs.chemistry.trotter.ising.unitaries
import qualtran.bloqs.chemistry.trotter.trotterized_unitary
import qualtran.bloqs.data_loading.qrom
import qualtran.bloqs.data_loading.select_swap_qrom
import qualtran.bloqs.factoring.ecc
import qualtran.bloqs.factoring.mod_exp
import qualtran.bloqs.hamiltonian_simulation.hamiltonian_simulation_by_gqsp
Expand Down Expand Up @@ -498,6 +499,11 @@
module=qualtran.bloqs.data_loading.qrom,
bloq_specs=[qualtran.bloqs.data_loading.qrom._QROM_DOC],
),
NotebookSpecV2(
title='SelectSwapQROM',
module=qualtran.bloqs.data_loading.select_swap_qrom,
bloq_specs=[qualtran.bloqs.data_loading.select_swap_qrom._SELECT_SWAP_QROM_DOC],
),
NotebookSpecV2(
title='Block Encoding',
module=qualtran.bloqs.block_encoding,
Expand Down
1 change: 1 addition & 0 deletions docs/bloqs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -95,6 +95,7 @@ Bloqs Library
hubbard_model.ipynb
multiplexers/apply_gate_to_lth_target.ipynb
data_loading/qrom.ipynb
data_loading/select_swap_qrom.ipynb
block_encoding.ipynb
reflection.ipynb
mcmt/multi_control_multi_target_pauli.ipynb
Expand Down
9 changes: 5 additions & 4 deletions qualtran/bloqs/chemistry/sparse/prepare.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@
PrepareUniformSuperposition,
)
from qualtran.linalg.lcu_util import preprocess_lcu_coefficients_for_reversible_sampling
from qualtran.symbolics.math_funcs import ceil, log2

if TYPE_CHECKING:
from qualtran import Bloq
Expand Down Expand Up @@ -313,10 +314,10 @@ def build_qrom_bloq(self) -> 'Bloq':
(n_n,) * 4 + (1,) * 2 + (n_n,) * 4 + (1,) * 2 + (self.num_bits_state_prep,)
)
if self.qroam_block_size is None:
block_size = 2 ** find_optimal_log_block_size(self.num_non_zero, sum(target_bitsizes))
log_block_sizes = find_optimal_log_block_size(self.num_non_zero, sum(target_bitsizes))
else:
block_size = self.qroam_block_size
qrom = SelectSwapQROM(
log_block_sizes = ceil(log2(self.qroam_block_size))
qrom = SelectSwapQROM.build_from_data(
self.ind_pqrs[0],
self.ind_pqrs[1],
self.ind_pqrs[2],
Expand All @@ -331,7 +332,7 @@ def build_qrom_bloq(self) -> 'Bloq':
self.alt_one_body,
self.keep,
target_bitsizes=target_bitsizes,
block_size=block_size,
log_block_sizes=log_block_sizes,
)
return qrom

Expand Down
4 changes: 2 additions & 2 deletions qualtran/bloqs/chemistry/thc/notebook_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,8 +48,8 @@


def custom_qroam_repr(self) -> str:
target_repr = repr(self._target_bitsizes)
return f"SelectSwapQROM(target_bitsizes={target_repr}, block_size={self.block_size})"
target_repr = repr(self.target_bitsizes)
return f"SelectSwapQROM(target_bitsizes={target_repr}, block_sizes={self.block_sizes})"


# TODO: better way of customizing label
Expand Down
4 changes: 2 additions & 2 deletions qualtran/bloqs/chemistry/thc/prepare.py
Original file line number Diff line number Diff line change
Expand Up @@ -382,7 +382,7 @@ def build_composite_bloq(
# 2. Make contiguous register from mu and nu and store in register `s`.
mu, nu, s = bb.add(ToContiguousIndex(log_mu, log_d), mu=mu, nu=nu, s=s)
# 3. Load alt / keep values
qroam = SelectSwapQROM(
qroam = SelectSwapQROM.build_from_data(
*(self.theta, self.alt_theta, self.alt_mu, self.alt_nu, self.keep),
target_bitsizes=(1, 1, log_mu, log_mu, self.keep_bitsize),
)
Expand Down Expand Up @@ -444,7 +444,7 @@ def build_call_graph(self, ssa: 'SympySymbolAllocator') -> Set['BloqCountT']:
data_size = self.num_spin_orb // 2 + self.num_mu * (self.num_mu + 1) // 2
nd = (data_size - 1).bit_length()
cost_2 = (ToContiguousIndex(nmu, nd), 1)
qroam = SelectSwapQROM(
qroam = SelectSwapQROM.build_from_data(
*(self.theta, self.alt_theta, self.alt_mu, self.alt_nu, self.keep),
target_bitsizes=(1, 1, nmu, nmu, self.keep_bitsize),
)
Expand Down
6 changes: 3 additions & 3 deletions qualtran/bloqs/chemistry/writing_algorithms.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -375,15 +375,15 @@
" target_bitsizes = (n_n,) * 4 + (self.num_bits_state_prep,)\n",
" ns = self.num_spin_orb // 2\n",
" data_size = ns ** 2 + ns**4\n",
" block_size = 2 ** find_optimal_log_block_size(data_size, sum(target_bitsizes))\n",
" qroam = SelectSwapQROM(\n",
" log_block_size = find_optimal_log_block_size(data_size, sum(target_bitsizes))\n",
" qroam = SelectSwapQROM.build_from_data(\n",
" self.alt_pqrs[0],\n",
" self.alt_pqrs[1],\n",
" self.alt_pqrs[2],\n",
" self.alt_pqrs[3],\n",
" self.keep,\n",
" target_bitsizes=target_bitsizes,\n",
" block_size=block_size,\n",
" log_block_sizes=[log_block_size],\n",
" )\n",
" (l, alt_pqrs[0], alt_pqrs[1], alt_pqrs[2], alt_pqrs[3], keep) = bb.add(\n",
" qroam,\n",
Expand Down
160 changes: 28 additions & 132 deletions qualtran/bloqs/data_loading/qrom.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,10 +13,10 @@
# limitations under the License.

"""Quantum read-only memory."""
from functools import cached_property
import numbers
from typing import (
Callable,
Dict,
cast,
Iterable,
Iterator,
Optional,
Expand All @@ -33,18 +33,17 @@
import sympy
from numpy.typing import ArrayLike, NDArray

from qualtran import bloq_example, BloqDocSpec, BoundedQUInt, QAny, Register
from qualtran import bloq_example, BloqDocSpec, Register
from qualtran._infra.gate_with_registers import merge_qubits
from qualtran.bloqs.basic_gates import CNOT
from qualtran.bloqs.data_loading.qrom_base import QROMBase
from qualtran.bloqs.mcmt.and_bloq import And, MultiAnd
from qualtran.bloqs.multiplexers.unary_iteration_bloq import UnaryIterationGate
from qualtran.drawing import Circle, Text, TextBox, WireSymbol
from qualtran.resource_counting import BloqCountT
from qualtran.simulation.classical_sim import ClassicalValT
from qualtran.symbolics import bit_length, is_symbolic, prod, shape, Shaped, SymbolicInt
from qualtran.symbolics import prod, SymbolicInt

if TYPE_CHECKING:
from qualtran.resource_counting import SympySymbolAllocator
from qualtran.resource_counting import BloqCountT, SympySymbolAllocator


def _to_tuple(x: Iterable[NDArray]) -> Sequence[NDArray]:
Expand All @@ -54,7 +53,7 @@ def _to_tuple(x: Iterable[NDArray]) -> Sequence[NDArray]:

@cirq.value_equality()
@attrs.frozen
class QROM(UnaryIterationGate):
class QROM(QROMBase, UnaryIterationGate): # type: ignore[misc]
r"""Bloq to load `data[l]` in the target register when the selection stores an index `l`.

## Overview
Expand Down Expand Up @@ -146,55 +145,15 @@ class QROM(UnaryIterationGate):
Babbush et. al. (2020). Figure 3.
"""

data_or_shape: Union[NDArray, Shaped] = attrs.field(
converter=lambda x: np.array(x) if isinstance(x, (list, tuple)) else x
)
selection_bitsizes: Tuple[SymbolicInt, ...] = attrs.field(
converter=lambda x: tuple(x.tolist() if isinstance(x, np.ndarray) else x)
)
target_bitsizes: Tuple[SymbolicInt, ...] = attrs.field(
converter=lambda x: tuple(x.tolist() if isinstance(x, np.ndarray) else x)
)
num_controls: SymbolicInt = 0

def has_data(self) -> bool:
return not isinstance(self.data_or_shape, Shaped)

@property
def data_shape(self) -> Tuple[SymbolicInt, ...]:
return shape(self.data_or_shape)[1:]

@property
def data(self) -> np.ndarray:
if not self.has_data():
raise ValueError(f"Data not available for symbolic QROM {self}")
assert isinstance(self.data_or_shape, np.ndarray)
return self.data_or_shape

def __attrs_post_init__(self):
assert all([is_symbolic(s) or isinstance(s, int) for s in self.selection_bitsizes])
assert all([is_symbolic(t) or isinstance(t, int) for t in self.target_bitsizes])
assert len(self.target_bitsizes) == self.data_or_shape.shape[0], (
f"len(self.target_bitsizes)={len(self.target_bitsizes)} should be same as "
f"len(self.data)={self.data_or_shape.shape[0]}"
)
if isinstance(self.data_or_shape, np.ndarray) and not is_symbolic(*self.target_bitsizes):
assert all(
t >= int(np.max(d)).bit_length() for t, d in zip(self.target_bitsizes, self.data)
)
assert isinstance(self.selection_bitsizes, tuple)
assert isinstance(self.target_bitsizes, tuple)

@classmethod
def build_from_data(cls, *data: ArrayLike, num_controls: SymbolicInt = 0) -> 'QROM':
_data = np.array([np.array(d, dtype=int) for d in data])
selection_bitsizes = tuple((s - 1).bit_length() for s in _data.shape[1:])
target_bitsizes = tuple(max(int(np.max(d)).bit_length(), 1) for d in data)
return QROM(
data_or_shape=_data,
selection_bitsizes=selection_bitsizes,
target_bitsizes=target_bitsizes,
num_controls=num_controls,
def build_from_data(
cls,
*data: ArrayLike,
target_bitsizes: Optional[Union[SymbolicInt, Tuple[SymbolicInt, ...]]] = None,
num_controls: SymbolicInt = 0,
) -> 'QROM':
return cls._build_from_data(
*data, target_bitsizes=target_bitsizes, num_controls=num_controls
)

@classmethod
Expand All @@ -203,59 +162,33 @@ def build_from_bitsize(
data_len_or_shape: Union[SymbolicInt, Tuple[SymbolicInt, ...]],
target_bitsizes: Union[SymbolicInt, Tuple[SymbolicInt, ...]],
*,
target_shapes: Tuple[Tuple[SymbolicInt, ...], ...] = (),
selection_bitsizes: Tuple[SymbolicInt, ...] = (),
num_controls: SymbolicInt = 0,
) -> 'QROM':
data_shape = (
(data_len_or_shape,) if isinstance(data_len_or_shape, int) else data_len_or_shape
)
if not isinstance(target_bitsizes, tuple):
target_bitsizes = (target_bitsizes,)
_data = Shaped((len(target_bitsizes),) + data_shape)
if selection_bitsizes is ():
selection_bitsizes = tuple(bit_length(s - 1) for s in _data.shape[1:])
assert len(selection_bitsizes) == len(_data.shape) - 1
return QROM(
data_or_shape=_data,
return cls._build_from_bitsize(
data_len_or_shape,
target_bitsizes,
target_shapes=target_shapes,
selection_bitsizes=selection_bitsizes,
target_bitsizes=target_bitsizes,
num_controls=num_controls,
)

@cached_property
def control_registers(self) -> Tuple[Register, ...]:
return () if not self.num_controls else (Register('control', QAny(self.num_controls)),)

@cached_property
def selection_registers(self) -> Tuple[Register, ...]:
types = [
BoundedQUInt(sb, l)
for l, sb in zip(self.data_or_shape.shape[1:], self.selection_bitsizes)
if is_symbolic(sb) or sb > 0
]
if len(types) == 1:
return (Register('selection', types[0]),)
return tuple(Register(f'selection{i}', qdtype) for i, qdtype in enumerate(types))

@cached_property
def target_registers(self) -> Tuple[Register, ...]:
return tuple(
Register(f'target{i}_', QAny(l))
for i, l in enumerate(self.target_bitsizes)
if is_symbolic(l) or l
)

def _load_nth_data(
self,
selection_idx: Tuple[int, ...],
gate: Callable[[cirq.Qid], cirq.Operation],
**target_regs: NDArray[cirq.Qid], # type: ignore[type-var]
) -> Iterator[cirq.OP_TREE]:
for i, d in enumerate(self.data):
target = target_regs.get(f'target{i}_', ())
for q, bit in zip(target, f'{int(d[selection_idx]):0{len(target)}b}'):
if int(bit):
yield gate(q)
target = target_regs.get(f'target{i}_', np.array([]))
target_bitsize, target_shape = self.target_bitsizes[i], self.target_shapes[i]
assert all(isinstance(x, (int, numbers.Integral)) for x in target_shape)
for idx in np.ndindex(cast(Tuple[int, ...], target_shape)):
data_to_load = int(d[selection_idx + idx])
for q, bit in zip(target[idx], f'{data_to_load:0{target_bitsize}b}'):
if int(bit):
yield gate(q)

def decompose_zero_selection(
self, context: cirq.DecompositionContext, **quregs: NDArray[cirq.Qid]
Expand Down Expand Up @@ -301,32 +234,6 @@ def nth_operation(
target_regs = {reg.name: kwargs[reg.name] for reg in self.target_registers}
yield self._load_nth_data(selection_idx, lambda q: CNOT().on(control, q), **target_regs)

def on_classical_vals(self, **vals: 'ClassicalValT') -> Dict[str, 'ClassicalValT']:
if not self.has_data():
raise NotImplementedError(f'Symbolic {self} does not support classical simulation')

if self.num_controls > 0:
control = vals['control']
if control != 2**self.num_controls - 1:
return vals
controls = {'control': control}
else:
controls = {}

n_dim = len(self.selection_bitsizes)
if n_dim == 1:
idx = vals['selection']
selections = {'selection': idx}
else:
# Multidimensional
idx = tuple(vals[f'selection{i}'] for i in range(n_dim)) # type: ignore[assignment]
selections = {f'selection{i}': idx[i] for i in range(n_dim)} # type: ignore[index]

# Retrieve the data; bitwise add them in to the input target values
targets = {f'target{d_i}_': d[idx] for d_i, d in enumerate(self.data)}
targets = {k: v ^ vals[k] for k, v in targets.items()}
return controls | selections | targets

def _circuit_diagram_info_(self, args) -> cirq.CircuitDiagramInfo:
from qualtran.cirq_interop._bloq_to_cirq import _wire_symbol_to_cirq_diagram_info

Expand All @@ -352,17 +259,6 @@ def wire_symbol(self, reg: Optional[Register], idx: Tuple[int, ...] = tuple()) -
return Circle()
raise ValueError(f'Unrecognized register name {name}')

def __pow__(self, power: int):
if power in [1, -1]:
return self
return NotImplemented # pragma: no cover

def _value_equality_values_(self):
data_tuple = (
tuple(tuple(d.flatten()) for d in self.data) if self.has_data() else self.data_or_shape
)
return (self.selection_registers, self.target_registers, self.control_registers, data_tuple)

def nth_operation_callgraph(self, **kwargs: int) -> Set['BloqCountT']:
selection_idx = tuple(kwargs[reg.name] for reg in self.selection_registers)
return {(CNOT(), sum(int(d[selection_idx]).bit_count() for d in self.data))}
Expand Down
Loading
Loading