Releases
1.32.0
What's New
PyTorch
Added MultiGPU support for Adaround.
Upgraded AIMET to support PyTorch version 2.1 as a new variant. AIMET with PyTorch version 1.13 remains the default.
Keras
For models with SeparableConv2D layers, use model_preparer first before applying any quantization API.
Common
Upgraded AIMET to support Ubuntu22 and Python3.10 for all AIMET variants.
Documentation
Packages
aimet_torch_gpu_pt21-1.32.0.cu118-cp310-cp310-manylinux_2_34_x86_64.whl
PyTorch 2.1 GPU package with Python 3.10 and CUDA 11
aimet_torch_gpu-1.32.0.cu117-cp310-cp310-manylinux_2_34_x86_64.whl
PyTorch 1.13 GPU package with Python 3.10 and CUDA 11.x
aimet_torch_cpu_pt21-1.32.0.cpu-cp310-cp310-manylinux_2_34_x86_64.whl
PyTorch 2.1 CPU package with Python 3.10 - If installing on a machine without CUDA
aimet_torch_cpu-1.32.0.cpu-cp310-cp310-manylinux_2_34_x86_64.whl
PyTorch 1.13 CPU package with Python 3.10 - If installing on a machine without CUDA
aimet_onnx_gpu-1.32.0.cu117-cp310-cp310-manylinux_2_34_x86_64.whl
ONNX 1.14 GPU package with Python 3.10 - Recommended for use with ONNX models
aimet_onnx_cpu-1.32.0.cpu-cp310-cp310-manylinux_2_34_x86_64.whl
ONNX 1.14 CPU package with Python 3.10 - If installing on a machine without CUDA
aimet_tf_gpu-1.32.0.cu118-cp310-cp310-manylinux_2_34_x86_64.whl
TensorFlow 2.10 GPU package with Python 3.10 - Recommended for use with TensorFlow models
aimet_tf_cpu-1.32.0.cpu-cp310-cp310-manylinux_2_34_x86_64.whl
TensorFlow 2.10 CPU package with Python 3.10 - If installing on a machine without CUDA
You can’t perform that action at this time.