Skip to content

Original reference implementation of "Analyzing the Internals of Neural Radiance Fields"

License

Notifications You must be signed in to change notification settings

r4dl/nerfinternals

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Analyzing the Internals of Neural Radiance Fields

Graz University of Technology

Our Approach

We propose a novel method to extract densities from intermediate activations. Using our approach, we can skip the forward pass of the coarse NeRF, in turn gaining efficiency. We find that this approach also works when using Mip-NeRF and even holds for proposal network samples, as in Mip-NeRF 360.

Installation

This repository follows the integration guidelines described here for custom methods within Nerfstudio.

0. Install Nerfstudio dependencies

Follow these instructions to install Nerfstudio.

1. Clone our repo

Navigate to the nerfstudio directory and run git clone https://github.com/r4dl/nerfinternals.git
The folder structure should now look like the following:

nerfstudio
├── ...
├── nerfinternals
│   ├── nerfinternals
│   ├── outputs
│   ├── scripts
│   ├── pyproject.toml
│   └── README.md
├── nerfstudio
│   ├── data
│   │   ├── blender
│   │   │   ├── chair
│   │   │   └── ...
│   │   ├── nerf_llff_data
│   │   │   ├── fern
│   │   │   └── ...
│   │   └── ...
│   └── ...
└── ...

Note that the nerfstudio/outputs directory is not created by default, but will be created if you train models.

2. Install as a python package

Navigate to the nerfstudio/nerfinternals folder and runpython -m pip install -e .

3. Run ns-install-cli

Note: You should re-activate your environment.

4. Run ns-train -h to verify the installation

You should see a list of subcommands containing...

╭─ subcommands ────────────────────────────────────────────────────────╮
│ activation-mipnerf    Using Activations to infer Depth, Mip-NeRF.    │
│ activation-nerf       Using Activations to infer Depth, NeRF.        │
│ activation-nerfacto   Using Activations to infer Depth, nerfacto.    │
│ ...                                                                  │
╰──────────────────────────────────────────────────────────────────────╯ 

You should see the new methods activation-{nerf, mipnerf, nerfacto}

Training

To train a model (just as done in the paper), run:

ns-train activation-{nerf, mipnerf, nerfacto} --data <path_to_data> <other cl-args> <dataparser>

Scripts

As we need to set a lot of individual command line arguments, we provide scripts in the nerfinternals/scripts/ directory to train models for all scenes of a dataset.
We provide a helper for each script, you can use ./launch_train_{blender, llff}_{nerf, nerfacto, nerfacto_NDC}.sh -h.
Note that we used the configuration in launch_train_llff_nerfacto.sh for our results in the main paper.
For this, we used the nerfstudio_data dataparser, hence we need to use ns-process-data to convert the LLFF dataset to the required format. Run ns-process-data -h for further information about this command. We use the default arguments for images, and we use the images with a downscale factor of 4.

Evaluation

To evaluate with our approach, use our eval.py script located in nerfinternals/nerfinternals/eval.py.
Our models expect data in the directory nerfstudio/data/{nerf_llff_data, blender}.
Example data can be downloaded with ns-download-data. We use the LLFF dataset provided by NeRF-Factory.
Run python nerfinternals/nerfinternals/eval.py -h to see a list of available options:

usage: eval.py [-h] --load-config PATH [--layer INT [INT ...]]
               [--fct INT [INT ...]] [--upsample | --no-upsample]
               [--run-normal | --no-run-normal] [--output-dir STR]

Load a checkpoint, use the activations for estimating the density.

╭─ arguments ────────────────────────────────────────────────────────────────╮
│ -h, --help              show this help message and exit                    │
│ --load-config PATH      Path to config YAML file. (required)               │
│ --layer INT [INT ...]   layer in which to observe the activations - must   │
│                         not be larger than num_layers (default: 0 1 2)     │
│ --fct INT [INT ...]     function to use - must not be larger than 2        │
│                         (default: 0 1 2)                                   │
│ --upsample, --no-upsample                                                  │
│                         whether to upsample or not (default: False)        │
│ --run-normal, --no-run-normal                                              │
│                         whether to run coarse-to-fine pipeline or not      │
│                         (default: True)                                    │
│ --output-dir STR        directory to save outputs in (default: eval)       │
╰────────────────────────────────────────────────────────────────────────────╯

As an example command, running from the nerfstudio/nerfinternals directory, you can use

python3 nerfinternals/eval.py --load-config outputs/chair/activation-nerf/2023-04-28_135527/config.yml --layer 0 --fct 0 --no-run-normal

which produces the following images (left NeRF, right Ours).
Coarse-to-fine Ours
Statistics are given in the the stats.json file (run on a NVIDIA 2070 Super):

  "base": {
    "t": 43.97965955734253,
    "metrics": {
      "psnr": 35.70448684692383,
      "ssim": 0.9865843057632446,
      "lpips": 0.020251736044883728
    }
  },
  "layer_00_ups_0_fct_std": {
    "t": 33.18729019165039,
    "metrics": {
      "psnr": 34.74652099609375,
      "ssim": 0.9822013974189758,
      "lpips": 0.03017939068377018,
      "quantitative": {
        "t_act": 1.0785419940948486,
        "t_coarse": 0.0,
        "t_fine": 32.10867691040039
      }
    }
  }

Pre-trained Models

As models are costly to train, especially for NeRF and Mip-NeRF, we provide pre-trained models in outputs.zip, hosted via Google Drive.
Note that these models can be used with {vanilla-nerf, mipnerf} by re-writing the corresponding config.yml file.
Create a directory nerfinternals/outputs and paste the models there.

Results

Our approach achieves the following performance on:

Blender Dataset LLFF Dataset
Model name PSNR
NeRF (best) 29.44 dB
Mip-NeRF (best) 29.35 dB
nerfacto (best) 26.56 dB
Model name PSNR
NeRF (best) 25.40 dB
Mip-NeRF (best) 25.49 dB
nerfacto (best) 24.85 dB

Acknowledgements

This project is built on Nerfstudio
NerfStudio logo
Our code was tested with nerfstudio=v0.3.1 and Cuda 11.7.

If you use our work or build on top of it, use the following citation:

@inproceedings(Radl2024NerfInternals,
  title     = {{Analyzing the Internals of Neural Radiance Fields}},
  author    = {Radl, Lukas and Kurz, Andreas and Steiner, Michael and Steinberger, Markus},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)},
  year      = {2024},
}

About

Original reference implementation of "Analyzing the Internals of Neural Radiance Fields"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published