First place solution for NASA Harvest Field Boundary Detection Challenge
MLHub model id: model_nasa_rwanda_field_boundary_competition_gold_v1
. Browse on Radiant MLHub.
Please review the model architecture, license, applicable spatial and temporal extents and other details in the model documentation.
Training | Inferencing | |
---|---|---|
RAM | 25 GB RAM | 16 GB RAM |
NVIDIA GPU | A100 80GB | Optional (but very slow) |
First clone this Git repository.
git clone https://github.com/radiantearth/model_nasa_rwanda_field_boundary_competition_gold.git
cd model_nasa_rwanda_field_boundary_competition_gold/
After cloning the model repository, you can use the Docker Compose runtime files as described below.
Pull pre-built image from Docker Hub (recommended):
docker pull docker.io/radiantearth/model_nasa_rwanda_field_boundary_competition_gold:1
Or build image from source:
docker build -t radiantearth/model_nasa_rwanda_field_boundary_competition_gold:1 -f Dockerfile .
-
Prepare your input and output data folders. The
data/
folder in this repository contains some placeholder files to guide you.- The
data/
folder must contain:-
input/
: input folder containing the tile imagery. This folder has the following naming convention:{dataset_id}_{tile_id}_{year}_{month}
. For example, for a dataset_id (nasa_rwanda_field_boundary_competition
), a tile_id (00
) and a year (2021
), we'll have the following structure:nasa_rwanda_field_boundary_competition_source_test_00_2021_03/ nasa_rwanda_field_boundary_competition_source_test_00_2021_04/ nasa_rwanda_field_boundary_competition_source_test_00_2021_08/ nasa_rwanda_field_boundary_competition_source_test_00_2021_10/ nasa_rwanda_field_boundary_competition_source_test_00_2021_11/ nasa_rwanda_field_boundary_competition_source_test_00_2021_12/
Notice that the months are fixed and have to be : ['2021_03', '2021_04', '2021_08', '2021_10', '2021_11', '2021_12'].
-
The
output/
folder is where the model will write inferencing results.
-
- The
-
Set
INPUT_DATA
andOUTPUT_DATA
environment variables corresponding with your input and output folders. These commands will vary depending on operating system and command-line shell:# change paths to your actual input and output folders export INPUT_DATA="/home/my_user/model_nasa_rwanda_field_boundary_competition_gold/data/input/" export OUTPUT_DATA="/home/my_user/model_nasa_rwanda_field_boundary_competition_gold/data/output/" export DATASET_ID="nasa_rwanda_field_boundary_competition"
-
Run the appropriate Docker Compose command for your system
docker compose up model_nasa_rwanda_field_boundary_competition_gold_v1
-
Wait for the
docker compose
to finish running, then inspect theOUTPUT_DATA
folder for results.
Please review the model output format and other technical details in the model documentation.