-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_analysis.py
171 lines (141 loc) · 6.42 KB
/
text_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import json
import datetime
import logging
from glob import glob
from typing import List
from openai import OpenAI
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize OpenAI client
with open("config.json") as config_file:
config = json.load(config_file)
api_key = config.get("api_key")
if not api_key:
raise ValueError("API key not found in config.json")
client = OpenAI(api_key=api_key)
# Generate analysis prompt
def create_analysis_prompt(papers_data: List[dict]) -> str:
return """
Analyze the following NeuroAI research papers from arXiv. Provide a comprehensive analysis report following these guidelines:
1. For each paper:
- Extract clear problem statement and solution approach
- Identify key technical innovations
- Note limitations and proposed future work
- Assess potential impact on the field
2. Overall Trend Analysis:
- Identify major themes and patterns across papers
- Highlight emerging technical approaches
- Note shifts in research focus
- Identify gaps in current research
3. Historical Context & Recommendations:
- Identify foundational papers related to these works
- Recommend key papers that provide important background
- Focus on highly-cited works that laid groundwork
- Consider both recent and classical contributions
4. Future Research Predictions:
- Project potential research directions based on current trends
- Identify leading research groups likely to pursue each direction
- Consider required technical breakthroughs
- Assess potential impact and timeline
- Ground predictions in current capabilities and limitations
5. Novel Research Combinations:
- Identify synergies between current papers
- Suggest novel combinations of techniques
- Highlight potential breakthrough applications
- Consider technical feasibility
Base all analysis on concrete evidence from the papers and broader research context.
Provide specific technical details and justifications for all observations.
Papers to analyze:
""" + json.dumps(papers_data, indent=2)
# Load and merge JSON files from data_store
def load_and_merge_json_files(data_store: str) -> List[dict]:
"""
Load and merge JSON files based on date conditions:
- If today is Sunday, load the past week's files.
- Otherwise, load the files from the past two days.
Args:
data_store (str): Path to the directory containing JSON files.
Returns:
List[dict]: Merged list of detailed paper data from the selected JSON files.
"""
today = datetime.date.today()
day_of_week = today.weekday() # Monday is 0, Sunday is 6
# Determine date range
if day_of_week == 6: # Sunday
start_date = today - datetime.timedelta(days=7)
logger.info("Today is Sunday. Loading files from the past week.")
else:
start_date = today - datetime.timedelta(days=2)
logger.info("Loading files from the past two days.")
files = glob(os.path.join(data_store, 'papers_*.json'))
all_data = []
for file_path in files:
file_date_str = os.path.basename(file_path)[7:17]
try:
file_date = datetime.datetime.strptime(file_date_str, '%Y-%m-%d').date()
# Include files that are within the specified date range
if start_date <= file_date <= today:
with open(file_path, 'r') as f:
data = json.load(f)
for category, papers in data.items():
for paper_id, paper_info in papers.items():
# Collect all information for each paper
paper_data = {
"id": paper_id,
"title": paper_info.get("title", ""),
"url": paper_info.get("url", ""),
"authors": paper_info.get("authors", ""),
"update_time": paper_info.get("update_time", ""),
"abstract": paper_info.get("abstract", "")
}
all_data.append(paper_data)
except ValueError:
logger.warning(f"Skipping file with unexpected date format: {file_path}")
if not all_data:
logger.warning("No valid data found in the specified date range.")
else:
logger.info(f"Loaded {len(all_data)} entries from files within the date range.")
return all_data
# Analyze research papers and generate Markdown report
def analyze_research_trends(data: List[dict], output_file: str):
prompt = create_analysis_prompt(data)
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are an AI research analyst specializing in NeuroAI."},
{"role": "user", "content": prompt}
],
max_tokens=3000
)
# Check if response has content
if not response.choices or not response.choices[0].message.content:
logger.error("API response is empty or not in the expected format.")
raise ValueError("Received empty or invalid response from the API")
# Save content as Markdown file
with open(output_file, 'w') as f:
f.write("# NeuroAI Research Analysis Report\n\n")
f.write(f"Generated on {datetime.date.today().strftime('%Y-%m-%d')}\n\n")
f.write(response.choices[0].message.content)
logger.info(f"Markdown report saved to {output_file}")
# Main function
def main(config):
data_store_path = config.get("data_store")
data_analysis_path = config.get("data_analysis")
# Check for missing paths
if not data_store_path or not data_analysis_path:
logger.error("Both 'data_store' and 'data_analysis' paths must be specified in config.json.")
return
# Create output directory if it doesn't exist
os.makedirs(data_analysis_path, exist_ok=True)
# Load and merge JSON data
data = load_and_merge_json_files(data_store_path)
if not data:
logger.error("No data loaded for analysis.")
return
# Generate and save analysis report
md_path = os.path.join(data_analysis_path, f"research_analysis_{datetime.date.today().strftime('%Y-%m-%d')}.md")
analyze_research_trends(data, md_path)
if __name__ == "__main__":
main(config)