Skip to content

randomrisk/NeuroAI-Daily-Arxiv

Repository files navigation

Updated on 2025-01-01

Brain

Publish Date Title Authors URL Abstract
2024-12-30 Sparse chaos in cortical circuits Rainer Engelken, Michael Monteforte, Fred Wolf Link Nerve impulses, the currency of information flow in the brain, are generated by an instability of the neuronal membrane potential dynamics. Neuronal circuits exhibit collective chaos that appears essential for learning, memory, sensory processing, and motor control. However, the factors controlling the nature and intensity of collective chaos in neuronal circuits are not well understood. Here we use computational ergodic theory to demonstrate that basic features of nerve impulse generation profoundly affect collective chaos in neuronal circuits. Numerically exact calculations of Lyapunov spectra, Kolmogorov-Sinai-entropy, and upper and lower bounds on attractor dimension show that changes in nerve impulse generation in individual neurons moderately impact information encoding rates but qualitatively transform phase space structure. Specifically, we find a drastic reduction in the number of unstable manifolds, Kolmogorov-Sinai entropy, and attractor dimension. Beyond a critical point, marked by the simultaneous breakdown of the diffusion approximation, a peak in the largest Lyapunov exponent, and a localization transition of the leading covariant Lyapunov vector, networks exhibit sparse chaos: prolonged periods of near stable dynamics interrupted by short bursts of intense chaos. Analysis of large, more realistically structured networks supports the generality of these findings. In cortical circuits, biophysical properties appear tuned to this regime of sparse chaos. Our results reveal a close link between fundamental aspects of single-neuron biophysics and the collective dynamics of cortical circuits, suggesting that nerve impulse generation mechanisms are adapted to enhance circuit controllability and information flow.
2024-12-30 A Standardized Framework for Sensor Placement in Human Motion Capture and Wearable Applications Seyed Yahya Shirazi, Julius Welzel, Sein Jeung, Lara Godbersen Link The proliferation of wearable sensors and monitoring technologies has created an urgent need for standardized sensor placement protocols. While existing standards like SENIAM address specific applications, no comprehensive framework spans different sensing modalities and applications. We present a unified sensor placement standard that ensures the reproducibility and transferability of human movement and physiological data across various systems and research domains. Our framework provides precise anatomical landmarks, coordinate systems, and placement protocols with defined precision levels, compatible with existing data-sharing standards such as the Brain Imaging Data Structure (BIDS) and Heirechciacal Event Descriptors (HED). This framework aims to enhance data quality, reproducibility, and interoperability in applications ranging from lab-based clinical biomechanics to continuous health monitoring in everyday life.
2024-12-30 Comparative Analysis of 2D and 3D ResNet Architectures for IDH and MGMT Mutation Detection in Glioma Patients Danial Elyassirad, Benyamin Gheiji, Mahsa Vatanparast, Amir Mahmoud Ahmadzadeh, Neda Kamandi, Amirmohammad Soleimanian, Sara Salehi, Shahriar Faghani Link Gliomas are the most common cause of mortality among primary brain tumors. Molecular markers, including Isocitrate Dehydrogenase (IDH) and O[6]-methylguanine-DNA methyltransferase (MGMT) influence treatment responses and prognosis. Deep learning (DL) models may provide a non-invasive method for predicting the status of these molecular markers. To achieve non-invasive determination of gene mutations in glioma patients, we compare 2D and 3D ResNet models to predict IDH and MGMT status, using T1, post-contrast T1, and FLAIR MRI sequences. USCF glioma dataset was used, which contains 495 patients with known IDH and 410 patients with known MGMT status. The dataset was divided into training (60%), tuning (20%), and test (20%) subsets at the patient level. The 2D models take axial, coronal, and sagittal tumor slices as three separate models. To ensemble the 2D predictions the three different views were combined using logistic regression. Various ResNet architectures (ResNet10, 18, 34, 50, 101, 152) were trained. For the 3D approach, we incorporated the entire brain tumor volume in the ResNet10, 18, and 34 models. After optimizing each model, the models with the lowest tuning loss were selected for further evaluation on the separate test sets. The best-performing models in IDH prediction were the 2D ResNet50, achieving a test area under the receiver operating characteristic curve (AUROC) of 0.9096, and the 3D ResNet34, which reached a test AUROC of 0.8999. For MGMT status prediction, the 2D ResNet152 achieved a test AUROC of 0.6168; however, all 3D models yielded AUROCs less than 0.5. Overall, the study indicated that both 2D and 3D models showed high predictive value for IDH prediction, with slightly better performance in 2D models.
2024-12-30 The FlEye camera: Sampling the joint distribution of natural scenes and motion Charles J. Edelson, Paul Smith, Sima Setayeshgar, William Bialek, Rob R. de Ruyter van Steveninck Link To make efficient use of limited physical resources, the brain must match its coding and computational strategies to the statistical structure of input signals. An attractive testing ground for these principles is the problem of motion estimation in the fly visual system: we understand the optics of the compound eye, have a quantitative description of input signals and noise from the retina, and can record from output neurons that encode estimates of different velocity components. Furthermore, recent work provides a nearly complete wiring diagram of the intervening circuitry. What is missing is a characterization of the visual signals and motions that flies encounter in a natural context. We attack this directly with the development of a specialized camera that matches the high temporal resolution, optical properties, and spectral sensitivity of the fly's eye; inertial motion sensors provide ground truth about rotations and translations through the world. We describe the design, construction, and performance characteristics of this FlEye camera. To illustrate the opportunities created by this instrument we use data on movies and motion to construct optimal local motion estimators that can be compared with the responses of the fly's motion sensitive neurons.
2024-12-30 Analog Alchemy: Neural Computation with In-Memory Inference, Learning and Routing Yigit Demirag Link As neural computation is revolutionizing the field of Artificial Intelligence (AI), rethinking the ideal neural hardware is becoming the next frontier. Fast and reliable von Neumann architecture has been the hosting platform for neural computation. Although capable, its separation of memory and computation creates the bottleneck for the energy efficiency of neural computation, contrasting the biological brain. The question remains: how can we efficiently combine memory and computation, while exploiting the physics of the substrate, to build intelligent systems? In this thesis, I explore an alternative way with memristive devices for neural computation, where the unique physical dynamics of the devices are used for inference, learning and routing. Guided by the principles of gradient-based learning, we selected functions that need to be materialized, and analyzed connectomics principles for efficient wiring. Despite non-idealities and noise inherent in analog physics, I will provide hardware evidence of adaptability of local learning to memristive substrates, new material stacks and circuit blocks that aid in solving the credit assignment problem and efficient routing between analog crossbars for scalable architectures.
2024-12-30 Fine-Tuning TransMorph with Gradient Correlation for Anatomical Alignment Lukas Förner, Kartikay Tehlan, Thomas Wendler Link Unsupervised deep learning is a promising method in brain MRI registration to reduce the reliance on anatomical labels, while still achieving anatomically accurate transformations. For the Learn2Reg2024 LUMIR challenge, we propose fine-tuning of the pre-trained TransMorph model to improve the convergence stability as well as the deformation smoothness. The former is achieved through the FAdam optimizer, and consistency in structural changes is incorporated through the addition of gradient correlation in the similarity measure, improving anatomical alignment. The results show slight improvements in the Dice and HdDist95 scores, and a notable reduction in the NDV compared to the baseline TransMorph model. These are also confirmed by inspecting the boundaries of the tissue. Our proposed method highlights the effectiveness of including Gradient Correlation to achieve smoother and structurally consistent deformations for interpatient brain MRI registration.
2024-12-30 Effective and Efficient Intracortical Brain Signal Decoding with Spiking Neural Networks Haotian Fu, Peng Zhang, Song Yang, Herui Zhang, Ziwei Wang, Dongrui Wu Link A brain-computer interface (BCI) facilitates direct interaction between the brain and external devices. To concurrently achieve high decoding accuracy and low energy consumption in invasive BCIs, we propose a novel spiking neural network (SNN) framework incorporating local synaptic stabilization (LSS) and channel-wise attention (CA), termed LSS-CA-SNN. LSS optimizes neuronal membrane potential dynamics, boosting classification performance, while CA refines neuronal activation, effectively reducing energy consumption. Furthermore, we introduce SpikeDrop, a data augmentation strategy designed to expand the training dataset thus enhancing model generalizability. Experiments on invasive spiking datasets recorded from two rhesus macaques demonstrated that LSS-CA-SNN surpassed state-of-the-art artificial neural networks (ANNs) in both decoding accuracy and energy efficiency, achieving 0.80-3.87% performance gains and 14.78-43.86 times energy saving. This study highlights the potential of LSS-CA-SNN and SpikeDrop in advancing invasive BCI applications.
2024-12-30 Residual Connection Networks in Medical Image Processing: Exploration of ResUnet++ Model Driven by Human Computer Interaction Peixin Dai, Jingsi Zhang, Zhitao Shu Link Accurate identification and localisation of brain tumours from medical images remain challenging due to tumour variability and structural complexity. Convolutional Neural Networks (CNNs), particularly ResNet and Unet, have made significant progress in medical image processing, offering robust capabilities for image segmentation. However, limited research has explored their integration with human-computer interaction (HCI) to enhance usability, interpretability, and clinical applicability. This paper introduces ResUnet++, an advanced hybrid model combining ResNet and Unet++, designed to improve tumour detection and localisation while fostering seamless interaction between clinicians and medical imaging systems. ResUnet++ integrates residual blocks in both the downsampling and upsampling phases, ensuring critical image features are preserved. By incorporating HCI principles, the model provides intuitive, real-time feedback, enabling clinicians to visualise and interact with tumour localisation results effectively. This fosters informed decision-making and supports workflow efficiency in clinical settings. We evaluated ResUnet++ on the LGG Segmentation Dataset, achieving a Jaccard Loss of 98.17%. The results demonstrate its strong segmentation performance and potential for real-world applications. By bridging advanced medical imaging techniques with HCI, ResUnet++ offers a foundation for developing interactive diagnostic tools, improving clinician trust, decision accuracy, and patient outcomes, and advancing the integration of AI in healthcare workflows.
2024-12-30 Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis Yousef Yeganeh, Ioannis Charisiadis, Marta Hasny, Martin Hartenberger, Björn Ommer, Nassir Navab, Azade Farshad, Ehsan Adeli Link Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models; however, such large datasets are not always accessible in medical imaging due to cost and privacy issues, which contradicts one of the main applications of such models to produce synthetic samples where real data is scarce. Also, finetuning on pre-trained general models has been a challenge due to the distribution shift between the medical domain and the pre-trained models. Here, we propose Latent Drift (LD) for diffusion models that can be adopted for any fine-tuning method to mitigate the issues faced by the distribution shift or employed in inference time as a condition. Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation, which is crucial to investigate how parameters such as gender, age, and adding or removing diseases in a patient would alter the medical images. We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation. Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes. The source code of this work will be publicly released upon its acceptance.
2024-12-28 Election of Collaborators via Reinforcement Learning for Federated Brain Tumor Segmentation Muhammad Irfan Khan, Elina Kontio, Suleiman A. Khan, Mojtaba Jafaritadi Link Federated learning (FL) enables collaborative model training across decentralized datasets while preserving data privacy. However, optimally selecting participating collaborators in dynamic FL environments remains challenging. We present RL-HSimAgg, a novel reinforcement learning (RL) and similarity-weighted aggregation (simAgg) algorithm using harmonic mean to manage outlier data points. This paper proposes applying multi-armed bandit algorithms to improve collaborator selection and model generalization. By balancing exploration-exploitation trade-offs, these RL methods can promote resource-efficient training with diverse datasets. We demonstrate the effectiveness of Epsilon-greedy (EG) and upper confidence bound (UCB) algorithms for federated brain lesion segmentation. In simulation experiments on internal and external validation sets, RL-HSimAgg with UCB collaborator outperformed the EG method across all metrics, achieving higher Dice scores for Enhancing Tumor (0.7334 vs 0.6797), Tumor Core (0.7432 vs 0.6821), and Whole Tumor (0.8252 vs 0.7931) segmentation. Therefore, for the Federated Tumor Segmentation Challenge (FeTS 2024), we consider UCB as our primary client selection approach in federated Glioblastoma lesion segmentation of multi-modal MRIs. In conclusion, our research demonstrates that RL-based collaborator management, e.g. using UCB, can potentially improve model robustness and flexibility in distributed learning environments, particularly in domains like brain tumor segmentation.

EEG

Publish Date Title Authors URL Abstract
2024-12-28 Improving SSVEP BCI Spellers With Data Augmentation and Language Models Joseph Zhang, Ruiming Zhang, Kipngeno Koech, David Hill, Kateryna Shapovalenko Link Steady-State Visual Evoked Potential (SSVEP) spellers are a promising communication tool for individuals with disabilities. This Brain-Computer Interface utilizes scalp potential data from (electroencephalography) EEG electrodes on a subject's head to decode specific letters or arbitrary targets the subject is looking at on a screen. However, deep neural networks for SSVEP spellers often suffer from low accuracy and poor generalizability to unseen subjects, largely due to the high variability in EEG data. In this study, we propose a hybrid approach combining data augmentation and language modeling to enhance the performance of SSVEP spellers. Using the Benchmark dataset from Tsinghua University, we explore various data augmentation techniques, including frequency masking, time masking, and noise injection, to improve the robustness of deep learning models. Additionally, we integrate a language model (CharRNN) with EEGNet to incorporate linguistic context, significantly enhancing word-level decoding accuracy. Our results demonstrate accuracy improvements of up to 2.9 percent over the baseline, with time masking and language modeling showing the most promise. This work paves the way for more accurate and generalizable SSVEP speller systems, offering improved communication solutions for individuals with disabilities.
2024-12-28 Comprehensive Review of EEG-to-Output Research: Decoding Neural Signals into Images, Videos, and Audio Yashvir Sabharwal, Balaji Rama Link Electroencephalography (EEG) is an invaluable tool in neuroscience, offering insights into brain activity with high temporal resolution. Recent advancements in machine learning and generative modeling have catalyzed the application of EEG in reconstructing perceptual experiences, including images, videos, and audio. This paper systematically reviews EEG-to-output research, focusing on state-of-the-art generative methods, evaluation metrics, and data challenges. Using PRISMA guidelines, we analyze 1800 studies and identify key trends, challenges, and opportunities in the field. The findings emphasize the potential of advanced models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Transformers, while highlighting the pressing need for standardized datasets and cross-subject generalization. A roadmap for future research is proposed that aims to improve decoding accuracy and broadening real-world applications.
2024-12-27 EEG-Reptile: An Automatized Reptile-Based Meta-Learning Library for BCIs Daniil A. Berdyshev, Artem M. Grachev, Sergei L. Shishkin, Bogdan L. Kozyrskiy Link Meta-learning, i.e., "learning to learn", is a promising approach to enable efficient BCI classifier training with limited amounts of data. It can effectively use collections of in some way similar classification tasks, with rapid adaptation to new tasks where only minimal data are available. However, applying meta-learning to existing classifiers and BCI tasks requires significant effort. To address this issue, we propose EEG-Reptile, an automated library that leverages meta-learning to improve classification accuracy of neural networks in BCIs and other EEG-based applications. It utilizes the Reptile meta-learning algorithm to adapt neural network classifiers of EEG data to the inter-subject domain, allowing for more efficient fine-tuning for a new subject on a small amount of data. The proposed library incorporates an automated hyperparameter tuning module, a data management pipeline, and an implementation of the Reptile meta-learning algorithm. EEG-Reptile automation level allows using it without deep understanding of meta-learning. We demonstrate the effectiveness of EEG-Reptile on two benchmark datasets (BCI IV 2a, Lee2019 MI) and three neural network architectures (EEGNet, FBCNet, EEG-Inception). Our library achieved improvement in both zero-shot and few-shot learning scenarios compared to traditional transfer learning approaches.
2024-12-27 Finger in Camera Speaks Everything: Unconstrained Air-Writing for Real-World Meiqi Wu, Kaiqi Huang, Yuanqiang Cai, Shiyu Hu, Yuzhong Zhao, Weiqiang Wang Link Air-writing is a challenging task that combines the fields of computer vision and natural language processing, offering an intuitive and natural approach for human-computer interaction. However, current air-writing solutions face two primary challenges: (1) their dependency on complex sensors (e.g., Radar, EEGs and others) for capturing precise handwritten trajectories, and (2) the absence of a video-based air-writing dataset that covers a comprehensive vocabulary range. These limitations impede their practicality in various real-world scenarios, including the use on devices like iPhones and laptops. To tackle these challenges, we present the groundbreaking air-writing Chinese character video dataset (AWCV-100K-UCAS2024), serving as a pioneering benchmark for video-based air-writing. This dataset captures handwritten trajectories in various real-world scenarios using commonly accessible RGB cameras, eliminating the need for complex sensors. AWCV-100K-UCAS2024 includes 8.8 million video frames, encompassing the complete set of 3,755 characters from the GB2312-80 level-1 set (GB1). Furthermore, we introduce our baseline approach, the video-based character recognizer (VCRec). VCRec adeptly extracts fingertip features from sparse visual cues and employs a spatio-temporal sequence module for analysis. Experimental results showcase the superior performance of VCRec compared to existing models in recognizing air-written characters, both quantitatively and qualitatively. This breakthrough paves the way for enhanced human-computer interaction in real-world contexts. Moreover, our approach leverages affordable RGB cameras, enabling its applicability in a diverse range of scenarios. The code and data examples will be made public at https://github.com/wmeiqi/AWCV.
2024-12-27 Real-time classification of EEG signals using Machine Learning deployment Swati Chowdhuri, Satadip Saha, Samadrita Karmakar, Ankur Chanda Link The prevailing educational methods predominantly rely on traditional classroom instruction or online delivery, often limiting the teachers' ability to engage effectively with all the students simultaneously. A more intrinsic method of evaluating student attentiveness during lectures can enable the educators to tailor the course materials and their teaching styles in order to better meet the students' needs. The aim of this paper is to enhance teaching quality in real time, thereby fostering a higher student engagement in the classroom activities. By monitoring the students' electroencephalography (EEG) signals and employing machine learning algorithms, this study proposes a comprehensive solution for addressing this challenge. Machine learning has emerged as a powerful tool for simplifying the analysis of complex variables, enabling the effective assessment of the students' concentration levels based on specific parameters. However, the real-time impact of machine learning models necessitates a careful consideration as their deployment is concerned. This study proposes a machine learning-based approach for predicting the level of students' comprehension with regard to a certain topic. A browser interface was introduced that accesses the values of the system's parameters to determine a student's level of concentration on a chosen topic. The deployment of the proposed system made it necessary to address the real-time challenges faced by the students, consider the system's cost, and establish trust in its efficacy. This paper presents the efforts made for approaching this pertinent issue through the implementation of innovative technologies and provides a framework for addressing key considerations for future research directions.
2024-12-26 Revealing the Self: Brainwave-Based Human Trait Identification Md Mirajul Islam, Md Nahiyan Uddin, Maoyejatun Hasana, Debojit Pandit, Nafis Mahmud Rahman, Sriram Chellappan, Sami Azam, A. B. M. Alim Al Islam Link People exhibit unique emotional responses. In the same scenario, the emotional reactions of two individuals can be either similar or vastly different. For instance, consider one person's reaction to an invitation to smoke versus another person's response to a query about their sleep quality. The identification of these individual traits through the observation of common physical parameters opens the door to a wide range of applications, including psychological analysis, criminology, disease prediction, addiction control, and more. While there has been previous research in the fields of psychometrics, inertial sensors, computer vision, and audio analysis, this paper introduces a novel technique for identifying human traits in real time using brainwave data. To achieve this, we begin with an extensive study of brainwave data collected from 80 participants using a portable EEG headset. We also conduct a statistical analysis of the collected data utilizing box plots. Our analysis uncovers several new insights, leading us to a groundbreaking unified approach for identifying diverse human traits by leveraging machine learning techniques on EEG data. Our analysis demonstrates that this proposed solution achieves high accuracy. Moreover, we explore two deep-learning models to compare the performance of our solution. Consequently, we have developed an integrated, real-time trait identification solution using EEG data, based on the insights from our analysis. To validate our approach, we conducted a rigorous user evaluation with an additional 20 participants. The outcomes of this evaluation illustrate both high accuracy and favorable user ratings, emphasizing the robust potential of our proposed method to serve as a versatile solution for human trait identification.
2024-12-24 Towards the Automatic Detection of Vection in Virtual Reality Using EEG Gaël Van der Lee, Anatole Lécuyer, Maxence Naud, Reinhold Scherer, François Cabestaing, Hakim Si-Mohammed Link Vection, the visual illusion of self-motion, provides a strong marker of the VR user experience and plays an important role in both presence and cybersickness. Traditional measurements have been conducted using questionnaires, which exhibit inherent limitations due to their subjective nature and preventing real-time adjustments. Detecting vection in real time would allow VR systems to adapt to users' needs, improving comfort and minimizing negative effects like motion sickness. This paper investigates the presence of vection markers in electroencephalogram (EEG) brain signals using evoked potentials (brain responses to external stimulations). We designed a VR experiment that induces vection using two conditions: (1) forward acceleration or (2) backward acceleration. We recorded both electroencephalographic (EEG) signals and gathered subjective reports on thirty (30) participants. We found an evoked potential of vection characterized by a positive peak around 600 ms (P600) after stimulus onset in the parietal region and a simultaneous negative peak in the frontal region. Our results also found participant variability in sensitivity to vection and cybersickness and EEG markers of acceleration across subjects. This result is promising for potential detection of vection using EEG and paves the way for future studies towards a better understanding of vection. It also provides insights into the functional role of the visual system and its integration with the vestibular system during motion-perception. It has the potential to help enhance VR user experience by qualifying users' perceived vection and adapting the VR environments accordingly.
2024-12-23 Signal Transformation for Effective Multi-Channel Signal Processing Sunil Kumar Kopparapu Link Electroencephalography (EEG) is an non-invasive method to record the electrical activity of the brain. The EEG signals are low bandwidth and recorded from multiple electrodes simultaneously in a time synchronized manner. Typical EEG signal processing involves extracting features from all the individual channels separately and then fusing these features for downstream applications. In this paper, we propose a signal transformation, using basic signal processing, to combine the individual channels of a low-bandwidth signal, like the EEG into a single-channel high-bandwidth signal, like audio. Further this signal transformation is bi-directional, namely the high-bandwidth single-channel can be transformed to generate the individual low-bandwidth signals without any loss of information. Such a transformation when applied to EEG signals overcomes the need to process multiple signals and allows for a single-channel processing. The advantage of this signal transformation is that it allows the use of pre-trained single-channel pre-trained models, for multi-channel signal processing and analysis. We further show the utility of the signal transformation on publicly available EEG dataset.
2024-12-23 Neural-MCRL: Neural Multimodal Contrastive Representation Learning for EEG-based Visual Decoding Yueyang Li, Zijian Kang, Shengyu Gong, Wenhao Dong, Weiming Zeng, Hongjie Yan, Wai Ting Siok, Nizhuan Wang Link Decoding neural visual representations from electroencephalogram (EEG)-based brain activity is crucial for advancing brain-machine interfaces (BMI) and has transformative potential for neural sensory rehabilitation. While multimodal contrastive representation learning (MCRL) has shown promise in neural decoding, existing methods often overlook semantic consistency and completeness within modalities and lack effective semantic alignment across modalities. This limits their ability to capture the complex representations of visual neural responses. We propose Neural-MCRL, a novel framework that achieves multimodal alignment through semantic bridging and cross-attention mechanisms, while ensuring completeness within modalities and consistency across modalities. Our framework also features the Neural Encoder with Spectral-Temporal Adaptation (NESTA), a EEG encoder that adaptively captures spectral patterns and learns subject-specific transformations. Experimental results demonstrate significant improvements in visual decoding accuracy and model generalization compared to state-of-the-art methods, advancing the field of EEG-based neural visual representation decoding in BMI. Codes will be available at: https://github.com/NZWANG/Neural-MCRL.
2024-12-22 Fatigue Monitoring Using Wearables and AI: Trends, Challenges, and Future Opportunities Kourosh Kakhi, Senthil Kumar Jagatheesaperumal, Abbas Khosravi, Roohallah Alizadehsani, U Rajendra Acharya Link Monitoring fatigue is essential for improving safety, particularly for people who work long shifts or in high-demand workplaces. The development of wearable technologies, such as fitness trackers and smartwatches, has made it possible to continuously analyze physiological signals in real-time to determine a person level of exhaustion. This has allowed for timely insights into preventing hazards associated with fatigue. This review focuses on wearable technology and artificial intelligence (AI) integration for tiredness detection, adhering to the PRISMA principles. Studies that used signal processing methods to extract pertinent aspects from physiological data, such as ECG, EMG, and EEG, among others, were analyzed as part of the systematic review process. Then, to find patterns of weariness and indicators of impending fatigue, these features were examined using machine learning and deep learning models. It was demonstrated that wearable technology and cutting-edge AI methods could accurately identify weariness through multi-modal data analysis. By merging data from several sources, information fusion techniques enhanced the precision and dependability of fatigue evaluation. Significant developments in AI-driven signal analysis were noted in the assessment, which should improve real-time fatigue monitoring while requiring less interference. Wearable solutions powered by AI and multi-source data fusion present a strong option for real-time tiredness monitoring in the workplace and other crucial environments. These developments open the door for more improvements in this field and offer useful tools for enhancing safety and reducing fatigue-related hazards.

BCI

Publish Date Title Authors URL Abstract
2024-12-30 Effective and Efficient Intracortical Brain Signal Decoding with Spiking Neural Networks Haotian Fu, Peng Zhang, Song Yang, Herui Zhang, Ziwei Wang, Dongrui Wu Link A brain-computer interface (BCI) facilitates direct interaction between the brain and external devices. To concurrently achieve high decoding accuracy and low energy consumption in invasive BCIs, we propose a novel spiking neural network (SNN) framework incorporating local synaptic stabilization (LSS) and channel-wise attention (CA), termed LSS-CA-SNN. LSS optimizes neuronal membrane potential dynamics, boosting classification performance, while CA refines neuronal activation, effectively reducing energy consumption. Furthermore, we introduce SpikeDrop, a data augmentation strategy designed to expand the training dataset thus enhancing model generalizability. Experiments on invasive spiking datasets recorded from two rhesus macaques demonstrated that LSS-CA-SNN surpassed state-of-the-art artificial neural networks (ANNs) in both decoding accuracy and energy efficiency, achieving 0.80-3.87% performance gains and 14.78-43.86 times energy saving. This study highlights the potential of LSS-CA-SNN and SpikeDrop in advancing invasive BCI applications.
2024-12-28 Improving SSVEP BCI Spellers With Data Augmentation and Language Models Joseph Zhang, Ruiming Zhang, Kipngeno Koech, David Hill, Kateryna Shapovalenko Link Steady-State Visual Evoked Potential (SSVEP) spellers are a promising communication tool for individuals with disabilities. This Brain-Computer Interface utilizes scalp potential data from (electroencephalography) EEG electrodes on a subject's head to decode specific letters or arbitrary targets the subject is looking at on a screen. However, deep neural networks for SSVEP spellers often suffer from low accuracy and poor generalizability to unseen subjects, largely due to the high variability in EEG data. In this study, we propose a hybrid approach combining data augmentation and language modeling to enhance the performance of SSVEP spellers. Using the Benchmark dataset from Tsinghua University, we explore various data augmentation techniques, including frequency masking, time masking, and noise injection, to improve the robustness of deep learning models. Additionally, we integrate a language model (CharRNN) with EEGNet to incorporate linguistic context, significantly enhancing word-level decoding accuracy. Our results demonstrate accuracy improvements of up to 2.9 percent over the baseline, with time masking and language modeling showing the most promise. This work paves the way for more accurate and generalizable SSVEP speller systems, offering improved communication solutions for individuals with disabilities.
2024-12-27 EEG-Reptile: An Automatized Reptile-Based Meta-Learning Library for BCIs Daniil A. Berdyshev, Artem M. Grachev, Sergei L. Shishkin, Bogdan L. Kozyrskiy Link Meta-learning, i.e., "learning to learn", is a promising approach to enable efficient BCI classifier training with limited amounts of data. It can effectively use collections of in some way similar classification tasks, with rapid adaptation to new tasks where only minimal data are available. However, applying meta-learning to existing classifiers and BCI tasks requires significant effort. To address this issue, we propose EEG-Reptile, an automated library that leverages meta-learning to improve classification accuracy of neural networks in BCIs and other EEG-based applications. It utilizes the Reptile meta-learning algorithm to adapt neural network classifiers of EEG data to the inter-subject domain, allowing for more efficient fine-tuning for a new subject on a small amount of data. The proposed library incorporates an automated hyperparameter tuning module, a data management pipeline, and an implementation of the Reptile meta-learning algorithm. EEG-Reptile automation level allows using it without deep understanding of meta-learning. We demonstrate the effectiveness of EEG-Reptile on two benchmark datasets (BCI IV 2a, Lee2019 MI) and three neural network architectures (EEGNet, FBCNet, EEG-Inception). Our library achieved improvement in both zero-shot and few-shot learning scenarios compared to traditional transfer learning approaches.
2024-12-24 Low count of optically pumped magnetometers furnishes a reliable real-time access to sensorimotor rhythm Nikita Fedosov, Daria Medvedeva, Oleg Shevtsov, Alexei Ossadtchi Link This study presents an analysis of sensorimotor rhythms using an advanced, optically-pumped magnetoencephalography (OPM-MEG) system - a novel and rapidly developing technology. We conducted real-movement and motor imagery experiments with nine participants across two distinct magnetically-shielded environments: one featuring an analog active suppression system and the other a digital implementation. Our findings demonstrate that, under optimal recording conditions, OPM sensors provide highly informative signals, suitable for use in practical motor imagery brain-computer interface (BCI) applications. We further examine the feasibility of a portable, low-sensor-count OPM-based BCI under varied experimental setups, highlighting its potential for real-time control of external devices via user intentions.
2024-12-20 MarkovType: A Markov Decision Process Strategy for Non-Invasive Brain-Computer Interfaces Typing Systems Elifnur Sunger, Yunus Bicer, Deniz Erdogmus, Tales Imbiriba Link Brain-Computer Interfaces (BCIs) help people with severe speech and motor disabilities communicate and interact with their environment using neural activity. This work focuses on the Rapid Serial Visual Presentation (RSVP) paradigm of BCIs using noninvasive electroencephalography (EEG). The RSVP typing task is a recursive task with multiple sequences, where users see only a subset of symbols in each sequence. Extensive research has been conducted to improve classification in the RSVP typing task, achieving fast classification. However, these methods struggle to achieve high accuracy and do not consider the typing mechanism in the learning procedure. They apply binary target and non-target classification without including recursive training. To improve performance in the classification of symbols while controlling the classification speed, we incorporate the typing setup into training by proposing a Partially Observable Markov Decision Process (POMDP) approach. To the best of our knowledge, this is the first work to formulate the RSVP typing task as a POMDP for recursive classification. Experiments show that the proposed approach, MarkovType, results in a more accurate typing system compared to competitors. Additionally, our experiments demonstrate that while there is a trade-off between accuracy and speed, MarkovType achieves the optimal balance between these factors compared to other methods.
2024-12-20 Predicting Artificial Neural Network Representations to Learn Recognition Model for Music Identification from Brain Recordings Taketo Akama, Zhuohao Zhang, Pengcheng Li, Kotaro Hongo, Hiroaki Kitano, Shun Minamikawa, Natalia Polouliakh Link Recent studies have demonstrated that the representations of artificial neural networks (ANNs) can exhibit notable similarities to cortical representations when subjected to identical auditory sensory inputs. In these studies, the ability to predict cortical representations is probed by regressing from ANN representations to cortical representations. Building upon this concept, our approach reverses the direction of prediction: we utilize ANN representations as a supervisory signal to train recognition models using noisy brain recordings obtained through non-invasive measurements. Specifically, we focus on constructing a recognition model for music identification, where electroencephalography (EEG) brain recordings collected during music listening serve as input. By training an EEG recognition model to predict ANN representations-representations associated with music identification-we observed a substantial improvement in classification accuracy. This study introduces a novel approach to developing recognition models for brain recordings in response to external auditory stimuli. It holds promise for advancing brain-computer interfaces (BCI), neural decoding techniques, and our understanding of music cognition. Furthermore, it provides new insights into the relationship between auditory brain activity and ANN representations.
2024-12-17 Predicting Workload in Virtual Flight Simulations using EEG Features (Including Post-hoc Analysis in Appendix) Bas Verkennis, Evy van Weelden, Francesca L. Marogna, Maryam Alimardani, Travis J. Wiltshire, Max M. Louwerse Link Effective cognitive workload management has a major impact on the safety and performance of pilots. Integrating brain-computer interfaces (BCIs) presents an opportunity for real-time workload assessment. Leveraging cognitive workload data from immersive, high-fidelity virtual reality (VR) flight simulations enhances ecological validity and allows for dynamic adjustments to training scenarios based on individual cognitive states. While prior studies have predominantly concentrated on EEG spectral power for workload prediction, delving into inter-brain connectivity may yield deeper insights. This study assessed the predictive value of EEG spectral and connectivity features in distinguishing high vs. low workload periods during simulated flight in VR and Desktop conditions. EEG data were collected from 52 non-pilot participants conducting flight tasks in an aircraft simulation, after which they reported cognitive workload using the NASA Task Load Index. Using an ensemble approach, a stacked classifier was trained to predict workload using two feature sets extracted from the EEG data: 1) spectral features (Baseline model), and 2) a combination of spectral and connectivity features (Connectivity model), both within the alpha, beta, and theta band ranges. Results showed that the performance of the Connectivity model surpassed the Baseline model. Additionally, Recursive Feature Elimination (RFE) provided insights into the most influential workload-predicting features, highlighting the potential dominance of parietal-directed connectivity in managing cognitive workload during simulated flight. Further research on other connectivity metrics and alternative models (such as deep learning) in a large sample of pilots is essential to validate the possibility of a real-time BCI for the prediction of workload under safety-critical operational conditions.
2024-12-16 Privacy-Preserving Brain-Computer Interfaces: A Systematic Review K. Xia, W. Duch, Y. Sun, K. Xu, W. Fang, H. Luo, Y. Zhang, D. Sang, X. Xu, F-Y Wang, D. Wu Link A brain-computer interface (BCI) establishes a direct communication pathway between the human brain and a computer. It has been widely used in medical diagnosis, rehabilitation, education, entertainment, etc. Most research so far focuses on making BCIs more accurate and reliable, but much less attention has been paid to their privacy. Developing a commercial BCI system usually requires close collaborations among multiple organizations, e.g., hospitals, universities, and/or companies. Input data in BCIs, e.g., electroencephalogram (EEG), contain rich privacy information, and the developed machine learning model is usually proprietary. Data and model transmission among different parties may incur significant privacy threats, and hence privacy protection in BCIs must be considered. Unfortunately, there does not exist any contemporary and comprehensive review on privacy-preserving BCIs. This paper fills this gap, by describing potential privacy threats and protection strategies in BCIs. It also points out several challenges and future research directions in developing privacy-preserving BCIs.
2024-12-16 Accurate, Robust and Privacy-Preserving Brain-Computer Interface Decoding Xiaoqing Chen, Tianwang Jia, Dongrui Wu Link An electroencephalogram (EEG) based brain-computer interface (BCI) enables direct communication between the brain and external devices. However, EEG-based BCIs face at least three major challenges in real-world applications: data scarcity and individual differences, adversarial vulnerability, and data privacy. While previous studies have addressed one or two of these issues, simultaneous accommodation of all three challenges remains challenging and unexplored. This paper fills this gap, by proposing an Augmented Robustness Ensemble (ARE) algorithm and integrating it into three privacy protection scenarios (centralized source-free transfer, federated source-free transfer, and source data perturbation), achieving simultaneously accurate decoding, adversarial robustness, and privacy protection of EEG-based BCIs. Experiments on three public EEG datasets demonstrated that our proposed approach outperformed over 10 classic and state-of-the-art approaches in both accuracy and robustness in all three privacy-preserving scenarios, even outperforming state-of-the-art transfer learning approaches that do not consider privacy protection at all. This is the first time that three major challenges in EEG-based BCIs can be addressed simultaneously, significantly improving the practicalness of EEG decoding in real-world BCIs.
2024-12-15 Imagined Speech State Classification for Robust Brain-Computer Interface Byung-Kwan Ko, Jun-Young Kim, Seo-Hyun Lee Link This study examines the effectiveness of traditional machine learning classifiers versus deep learning models for detecting the imagined speech using electroencephalogram data. Specifically, we evaluated conventional machine learning techniques such as CSP-SVM and LDA-SVM classifiers alongside deep learning architectures such as EEGNet, ShallowConvNet, and DeepConvNet. Machine learning classifiers exhibited significantly lower precision and recall, indicating limited feature extraction capabilities and poor generalization between imagined speech and idle states. In contrast, deep learning models, particularly EEGNet, achieved the highest accuracy of 0.7080 and an F1 score of 0.6718, demonstrating their enhanced ability in automatic feature extraction and representation learning, essential for capturing complex neurophysiological patterns. These findings highlight the limitations of conventional machine learning approaches in brain-computer interface (BCI) applications and advocate for adopting deep learning methodologies to achieve more precise and reliable classification of detecting imagined speech. This foundational research contributes to the development of imagined speech-based BCI systems.

fMRI

Publish Date Title Authors URL Abstract
2024-12-27 Signatures of prediction during natural listening in MEG data? Sahel Azizpour, Britta U. Westner, Jakub Szewczyk, Umut Güçlü, Linda Geerligs Link The brain uses contextual information and prior knowledge to anticipate upcoming content during language comprehension. Recent research has shown predictive signals can be revealed in pre-onset ECoG activity during naturalistic narrative listening, by building encoding models based on word embeddings from Large Language Models (LLMs). Similarly, evidence for long-range predictive encoding has been observed in fMRI data, where incorporating embeddings for multiple upcoming words in a narrative improves alignment with brain activity. This study examines whether similar predictive information can be detected in MEG, a technique with higher temporal resolution than fMRI but a lower signal-to-noise ratio than ECoG. Our findings indicate that MEG captures pre-onset representations up to 1 second before word onset, consistent with ECoG results. However, unlike fMRI findings, incorporating future word embeddings did not enhance MEG encoding, even for one word into the future, which suggests that the pre-onset encoding may not reflect predictive processing. This work demonstrates that MEG combined with LLMs is a valuable approach for studying language processing in naturalistic narratives and highlights the need to study further what constitutes evidence for prediction during natural listening.
2024-12-27 UniBrain: A Unified Model for Cross-Subject Brain Decoding Zicheng Wang, Zhen Zhao, Luping Zhou, Parashkev Nachev Link Brain decoding aims to reconstruct original stimuli from fMRI signals, providing insights into interpreting mental content. Current approaches rely heavily on subject-specific models due to the complex brain processing mechanisms and the variations in fMRI signals across individuals. Therefore, these methods greatly limit the generalization of models and fail to capture cross-subject commonalities. To address this, we present UniBrain, a unified brain decoding model that requires no subject-specific parameters. Our approach includes a group-based extractor to handle variable fMRI signal lengths, a mutual assistance embedder to capture cross-subject commonalities, and a bilevel feature alignment scheme for extracting subject-invariant features. We validate our UniBrain on the brain decoding benchmark, achieving comparable performance to current state-of-the-art subject-specific models with extremely fewer parameters. We also propose a generalization benchmark to encourage the community to emphasize cross-subject commonalities for more general brain decoding. Our code is available at https://github.com/xiaoyao3302/UniBrain.
2024-12-25 Unveiling Secrets of Brain Function With Generative Modeling: Motion Perception in Primates & Cortical Network Organization in Mice Hadi Vafaii Link This Dissertation is comprised of two main projects, addressing questions in neuroscience through applications of generative modeling. Project #1 (Chapter 4) explores how neurons encode features of the external world. I combine Helmholtz's "Perception as Unconscious Inference" -- paralleled by modern generative models like variational autoencoders (VAE) -- with the hierarchical structure of the visual cortex. This combination leads to the development of a hierarchical VAE model, which I test for its ability to mimic neurons from the primate visual cortex in response to motion stimuli. Results show that the hierarchical VAE perceives motion similar to the primate brain. Additionally, the model identifies causal factors of retinal motion inputs, such as object- and self-motion, in a completely unsupervised manner. Collectively, these results suggest that hierarchical inference underlines the brain's understanding of the world, and hierarchical VAEs can effectively model this understanding. Project #2 (Chapter 5) investigates the spatiotemporal structure of spontaneous brain activity and its reflection of brain states like rest. Using simultaneous fMRI and wide-field Ca2+ imaging data, this project demonstrates that the mouse cortex can be decomposed into overlapping communities, with around half of the cortical regions belonging to multiple communities. Comparisons reveal similarities and differences between networks inferred from fMRI and Ca2+ signals. The introduction (Chapter 1) is divided similarly to this abstract: sections 1.1 to 1.8 provide background information about Project #1, and sections 1.9 to 1.13 are related to Project #2. Chapter 2 includes historical background, Chapter 3 provides the necessary mathematical background, and finally, Chapter 6 contains concluding remarks and future directions.
2024-12-23 BrainMAP: Learning Multiple Activation Pathways in Brain Networks Song Wang, Zhenyu Lei, Zhen Tan, Jiaqi Ding, Xinyu Zhao, Yushun Dong, Guorong Wu, Tianlong Chen, Chen Chen, Aiying Zhang, Jundong Li Link Functional Magnetic Resonance Image (fMRI) is commonly employed to study human brain activity, since it offers insight into the relationship between functional fluctuations and human behavior. To enhance analysis and comprehension of brain activity, Graph Neural Networks (GNNs) have been widely applied to the analysis of functional connectivities (FC) derived from fMRI data, due to their ability to capture the synergistic interactions among brain regions. However, in the human brain, performing complex tasks typically involves the activation of certain pathways, which could be represented as paths across graphs. As such, conventional GNNs struggle to learn from these pathways due to the long-range dependencies of multiple pathways. To address these challenges, we introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks. BrainMAP leverages sequential models to identify long-range correlations among sequentialized brain regions and incorporates an aggregation module based on Mixture of Experts (MoE) to learn from multiple pathways. Our comprehensive experiments highlight BrainMAP's superior performance. Furthermore, our framework enables explanatory analyses of crucial brain regions involved in tasks. Our code is provided at https://github.com/LzyFischer/Graph-Mamba.
2024-12-21 Multi-atlas Ensemble Graph Neural Network Model For Major Depressive Disorder Detection Using Functional MRI Data Nojod M. Alotaibi, Areej M. Alhothali, Manar S. Ali Link Major depressive disorder (MDD) is one of the most common mental disorders, with significant impacts on many daily activities and quality of life. It stands as one of the most common mental disorders globally and ranks as the second leading cause of disability. The current diagnostic approach for MDD primarily relies on clinical observations and patient-reported symptoms, overlooking the diverse underlying causes and pathophysiological factors contributing to depression. Therefore, scientific researchers and clinicians must gain a deeper understanding of the pathophysiological mechanisms involved in MDD. There is growing evidence in neuroscience that depression is a brain network disorder, and the use of neuroimaging, such as magnetic resonance imaging (MRI), plays a significant role in identifying and treating MDD. Rest-state functional MRI (rs-fMRI) is among the most popular neuroimaging techniques used to study MDD. Deep learning techniques have been widely applied to neuroimaging data to help with early mental health disorder detection. Recent years have seen a rise in interest in graph neural networks (GNNs), which are deep neural architectures specifically designed to handle graph-structured data like rs-fMRI. This research aimed to develop an ensemble-based GNN model capable of detecting discriminative features from rs-fMRI images for the purpose of diagnosing MDD. Specifically, we constructed an ensemble model by combining features from multiple brain region segmentation atlases to capture brain complexity and detect distinct features more accurately than single atlas-based models. Further, the effectiveness of our model is demonstrated by assessing its performance on a large multi-site MDD dataset. The best performing model among all folds achieved an accuracy of 75.80%, a sensitivity of 88.89%, a specificity of 61.84%, a precision of 71.29%, and an F1-score of 79.12%.
2024-12-19 Accessing the topological properties of human brain functional sub-circuits in Echo State Networks Bach Nguyen, Tianlong Chen, Shu Yang, Bojian Hou, Li Shen, Duy Duong-Tran Link Recent years have witnessed an emerging trend in neuromorphic computing that centers around the use of brain connectomics as a blueprint for artificial neural networks. Connectomics-based neuromorphic computing has primarily focused on embedding human brain large-scale structural connectomes (SCs), as estimated from diffusion Magnetic Resonance Imaging (dMRI) modality, to echo-state networks (ESNs). A critical step in ESN embedding requires pre-determined read-in and read-out layers constructed by the induced subgraphs of the embedded reservoir. As \textit{a priori} set of functional sub-circuits are derived from functional MRI (fMRI) modality, it is unknown, till this point, whether the embedding of fMRI-induced sub-circuits/networks onto SCs is well justified from the neuro-physiological perspective and ESN performance across a variety of tasks. This paper proposes a pipeline to implement and evaluate ESNs with various embedded topologies and processing/memorization tasks. To this end, we showed that different performance optimums highly depend on the neuro-physiological characteristics of these pre-determined fMRI-induced sub-circuits. In general, fMRI-induced sub-circuit-embedded ESN outperforms simple bipartite and various null models with feed-forward properties commonly seen in MLP for different tasks and reservoir criticality conditions. We provided a thorough analysis of the topological properties of pre-determined fMRI-induced sub-circuits and highlighted their graph-theoretical properties that play significant roles in determining ESN performance.
2024-12-18 ICA-based Resting-State Networks Obtained on Large Autism fMRI Dataset ABIDE Sjir J. C. Schielen, Jesper Pilmeyer, Albert P. Aldenkamp, Danny Ruijters, Svitlana Zinger Link Functional magnetic resonance imaging (fMRI) has become instrumental in researching brain function. One application of fMRI is investigating potential neural features that distinguish people with autism spectrum disorder (ASD) from healthy controls. The Autism Brain Imaging Data Exchange (ABIDE) facilitates this research through its extensive data-sharing initiative. While ABIDE offers data preprocessed with various atlases, independent component analysis (ICA) for dimensionality reduction remains underutilized. We address this gap by presenting ICA-based resting-state networks (RSNs) from preprocessed scans from ABIDE, now publicly available: https://github.com/SjirSchielen/groupICAonABIDE. These RSNs unveil neural activation clusters without atlas constraints, offering a perspective on ASD analyses that complements the predominantly atlas-based literature. This contribution provides a valuable resource for further research into ASD, potentially aiding in developing new analytical approaches.
2024-12-17 Optimized two-stage AI-based Neural Decoding for Enhanced Visual Stimulus Reconstruction from fMRI Data Lorenzo Veronese, Andrea Moglia, Luca Mainardi, Pietro Cerveri Link AI-based neural decoding reconstructs visual perception by leveraging generative models to map brain activity, measured through functional MRI (fMRI), into latent hierarchical representations. Traditionally, ridge linear models transform fMRI into a latent space, which is then decoded using latent diffusion models (LDM) via a pre-trained variational autoencoder (VAE). Due to the complexity and noisiness of fMRI data, newer approaches split the reconstruction into two sequential steps, the first one providing a rough visual approximation, the second on improving the stimulus prediction via LDM endowed by CLIP embeddings. This work proposes a non-linear deep network to improve fMRI latent space representation, optimizing the dimensionality alike. Experiments on the Natural Scenes Dataset showed that the proposed architecture improved the structural similarity of the reconstructed image by about 2\% with respect to the state-of-the-art model, based on ridge linear transform. The reconstructed image's semantics improved by about 4\%, measured by perceptual similarity, with respect to the state-of-the-art. The noise sensitivity analysis of the LDM showed that the role of the first stage was fundamental to predict the stimulus featuring high structural similarity. Conversely, providing a large noise stimulus affected less the semantics of the predicted stimulus, while the structural similarity between the ground truth and predicted stimulus was very poor. The findings underscore the importance of leveraging non-linear relationships between BOLD signal and the latent representation and two-stage generative AI for optimizing the fidelity of reconstructed visual stimuli from noisy fMRI data.
2024-12-16 Generalizable Representation Learning for fMRI-based Neurological Disorder Identification Wenhui Cui, Haleh Akrami, Anand A. Joshi, Richard M. Leahy Link Despite the impressive advances achieved using deep learning for functional brain activity analysis, the heterogeneity of functional patterns and the scarcity of imaging data still pose challenges in tasks such as identifying neurological disorders. For functional Magnetic Resonance Imaging (fMRI), while data may be abundantly available from healthy controls, clinical data is often scarce, especially for rare diseases, limiting the ability of models to identify clinically-relevant features. We overcome this limitation by introducing a novel representation learning strategy integrating meta-learning with self-supervised learning to improve the generalization from normal to clinical features. This approach enables generalization to challenging clinical tasks featuring scarce training data. We achieve this by leveraging self-supervised learning on the control dataset to focus on inherent features that are not limited to a particular supervised task and incorporating meta-learning to improve the generalization across domains. To explore the generalizability of the learned representations to unseen clinical applications, we apply the model to four distinct clinical datasets featuring scarce and heterogeneous data for neurological disorder classification. Results demonstrate the superiority of our representation learning strategy on diverse clinically-relevant tasks.
2024-12-13 Data Integration with Fusion Searchlight: Classifying Brain States from Resting-state fMRI Simon Wein, Marco Riebel, Lisa-Marie Brunner, Caroline Nothdurfter, Rainer Rupprecht, Jens V. Schwarzbach Link Spontaneous neural activity observed in resting-state fMRI is characterized by complex spatio-temporal dynamics. Different measures related to local and global brain connectivity and fluctuations in low-frequency amplitudes can quantify individual aspects of these neural dynamics. Even though such measures are derived from the same functional signals, they are often evaluated separately, neglecting their interrelations and potentially reducing the analysis sensitivity. In our study, we present a fusion searchlight (FuSL) framework to combine the complementary information contained in different resting-state fMRI metrics and demonstrate how this can improve the decoding of brain states. Moreover, we show how explainable AI allows us to reconstruct the differential impact of each metric on the decoding, which additionally increases spatial specificity of searchlight analysis. In general, this framework can be adapted to combine information derived from different imaging modalities or experimental conditions, offering a versatile and interpretable tool for data fusion in neuroimaging.

MEG

Publish Date Title Authors URL Abstract
2024-12-27 Signatures of prediction during natural listening in MEG data? Sahel Azizpour, Britta U. Westner, Jakub Szewczyk, Umut Güçlü, Linda Geerligs Link The brain uses contextual information and prior knowledge to anticipate upcoming content during language comprehension. Recent research has shown predictive signals can be revealed in pre-onset ECoG activity during naturalistic narrative listening, by building encoding models based on word embeddings from Large Language Models (LLMs). Similarly, evidence for long-range predictive encoding has been observed in fMRI data, where incorporating embeddings for multiple upcoming words in a narrative improves alignment with brain activity. This study examines whether similar predictive information can be detected in MEG, a technique with higher temporal resolution than fMRI but a lower signal-to-noise ratio than ECoG. Our findings indicate that MEG captures pre-onset representations up to 1 second before word onset, consistent with ECoG results. However, unlike fMRI findings, incorporating future word embeddings did not enhance MEG encoding, even for one word into the future, which suggests that the pre-onset encoding may not reflect predictive processing. This work demonstrates that MEG combined with LLMs is a valuable approach for studying language processing in naturalistic narratives and highlights the need to study further what constitutes evidence for prediction during natural listening.
2024-12-24 Low count of optically pumped magnetometers furnishes a reliable real-time access to sensorimotor rhythm Nikita Fedosov, Daria Medvedeva, Oleg Shevtsov, Alexei Ossadtchi Link This study presents an analysis of sensorimotor rhythms using an advanced, optically-pumped magnetoencephalography (OPM-MEG) system - a novel and rapidly developing technology. We conducted real-movement and motor imagery experiments with nine participants across two distinct magnetically-shielded environments: one featuring an analog active suppression system and the other a digital implementation. Our findings demonstrate that, under optimal recording conditions, OPM sensors provide highly informative signals, suitable for use in practical motor imagery brain-computer interface (BCI) applications. We further examine the feasibility of a portable, low-sensor-count OPM-based BCI under varied experimental setups, highlighting its potential for real-time control of external devices via user intentions.
2024-12-12 LV-CadeNet: Long View Feature Convolution-Attention Fusion Encoder-Decoder Network for Clinical MEG Spike Detection Kuntao Xiao, Xiongfei Wang, Pengfei Teng, Yi Sun, Wanli Yang, Liang Zhang, Hanyang Dong, Guoming Luan, Shurong Sheng Link It is widely acknowledged that the epileptic foci can be pinpointed by source localizing interictal epileptic discharges (IEDs) via Magnetoencephalography (MEG). However, manual detection of IEDs, which appear as spikes in MEG data, is extremely labor intensive and requires considerable professional expertise, limiting the broader adoption of MEG technology. Numerous studies have focused on automatic detection of MEG spikes to overcome this challenge, but these efforts often validate their models on synthetic datasets with balanced positive and negative samples. In contrast, clinical MEG data is highly imbalanced, raising doubts on the real-world efficacy of these models. To address this issue, we introduce LV-CadeNet, a Long View feature Convolution-Attention fusion Encoder-Decoder Network, designed for automatic MEG spike detection in real-world clinical scenarios. Beyond addressing the disparity between training data distribution and clinical test data through semi-supervised learning, our approach also mimics human specialists by constructing long view morphological input data. Moreover, we propose an advanced convolution-attention module to extract temporal and spatial features from the input data. LV-CadeNet significantly improves the accuracy of MEG spike detection, boosting it from 42.31\% to 54.88\% on a novel clinical dataset sourced from Sanbo Brain Hospital Capital Medical University. This dataset, characterized by a highly imbalanced distribution of positive and negative samples, accurately represents real-world clinical scenarios.
2024-12-11 Decoding individual words from non-invasive brain recordings across 723 participants Stéphane d'Ascoli, Corentin Bel, Jérémy Rapin, Hubert Banville, Yohann Benchetrit, Christophe Pallier, Jean-Rémi King Link Deep learning has recently enabled the decoding of language from the neural activity of a few participants with electrodes implanted inside their brain. However, reliably decoding words from non-invasive recordings remains an open challenge. To tackle this issue, we introduce a novel deep learning pipeline to decode individual words from non-invasive electro- (EEG) and magneto-encephalography (MEG) signals. We train and evaluate our approach on an unprecedentedly large number of participants (723) exposed to five million words either written or spoken in English, French or Dutch. Our model outperforms existing methods consistently across participants, devices, languages, and tasks, and can decode words absent from the training set. Our analyses highlight the importance of the recording device and experimental protocol: MEG and reading are easier to decode than EEG and listening, respectively, and it is preferable to collect a large amount of data per participant than to repeat stimuli across a large number of participants. Furthermore, decoding performance consistently increases with the amount of (i) data used for training and (ii) data used for averaging during testing. Finally, single-word predictions show that our model effectively relies on word semantics but also captures syntactic and surface properties such as part-of-speech, word length and even individual letters, especially in the reading condition. Overall, our findings delineate the path and remaining challenges towards building non-invasive brain decoders for natural language.
2024-12-06 Measuring Goal-Directedness Matt MacDermott, James Fox, Francesco Belardinelli, Tom Everitt Link We define maximum entropy goal-directedness (MEG), a formal measure of goal-directedness in causal models and Markov decision processes, and give algorithms for computing it. Measuring goal-directedness is important, as it is a critical element of many concerns about harm from AI. It is also of philosophical interest, as goal-directedness is a key aspect of agency. MEG is based on an adaptation of the maximum causal entropy framework used in inverse reinforcement learning. It can measure goal-directedness with respect to a known utility function, a hypothesis class of utility functions, or a set of random variables. We prove that MEG satisfies several desiderata and demonstrate our algorithms with small-scale experiments.
2024-11-29 Neuroplasticity and Psychedelics: a comprehensive examination of classic and non-classic compounds in pre and clinical models Claudio Agnorelli, Meg Spriggs, Kate Godfrey, Gabriela Sawicka, Bettina Bohl, Hannah Douglass, Andrea Fagiolini, Hashemi Parastoo, Robin Carhart-Harris, David Nutt, David Erritzoe Link Neuroplasticity, the ability of the nervous system to adapt throughout an organism's lifespan, offers potential as both a biomarker and treatment target for neuropsychiatric conditions. Psychedelics, a burgeoning category of drugs, are increasingly prominent in psychiatric research, prompting inquiries into their mechanisms of action. Distinguishing themselves from traditional medications, psychedelics demonstrate rapid and enduring therapeutic effects after a single or few administrations, believed to stem from their neuroplasticity-enhancing properties. This review examines how classic psychedelics (e.g., LSD, psilocybin, N,N-DMT) and non-classic psychedelics (e.g., ketamine, MDMA) influence neuroplasticity. Drawing from preclinical and clinical studies, we explore the molecular, structural, and functional changes triggered by these agents. Animal studies suggest psychedelics induce heightened sensitivity of the nervous system to environmental stimuli (meta-plasticity), re-opening developmental windows for long-term structural changes (hyper-plasticity), with implications for mood and behavior. Translating these findings to humans faces challenges due to limitations in current imaging techniques. Nonetheless, promising new directions for human research are emerging, including the employment of novel positron-emission tomography (PET) radioligands, non-invasive brain stimulation methods, and multimodal approaches. By elucidating the interplay between psychedelics and neuroplasticity, this review informs the development of targeted interventions for neuropsychiatric disorders and advances understanding of psychedelics' therapeutic potential.
2024-11-29 On Monitoring Edge-Geodetic Sets of Dynamic Graph Zin Mar Myint, Ashish Saxena Link The concept of a monitoring edge-geodetic set (MEG-set) in a graph $G$, denoted $MEG(G)$, refers to a subset of vertices $MEG(G)\subseteq V(G)$ such that every edge $e$ in $G$ is monitored by some pair of vertices $ u, v \in MEG(G)$, where $e$ lies on all shortest paths between $u$ and $v$. The minimum number of vertices required to form such a set is called the monitoring edge-geodetic number, denoted $meg(G)$. The primary motivation for studying $MEG$-sets in previous works arises from scenarios in which certain edges are removed from $G$. In these cases, the vertices of the $MEG$-set are responsible for detecting these deletions. Such detection is crucial for identifying which edges have been removed from $G$ and need to be repaired. In real life, repairing these edges may be costly, or sometimes it is impossible to repair edges. In this case, the original $MEG$-set may no longer be effective in monitoring the modified graph. This highlights the importance of reassessing and adapting the $MEG$-set after edge deletions. This work investigates the monitoring edge-geodetic properties of graphs, focusing on how the removal of $k$ edges affects the structure of a graph and influences its monitoring capabilities. Specifically, we explore how the monitoring edge-geodetic number $meg(G)$ changes when $k$ edges are removed. The study aims to compare the monitoring properties of the original graph with those of the modified graph and to understand the impact of edge deletions.
2024-11-14 Towards Neural Foundation Models for Vision: Aligning EEG, MEG, and fMRI Representations for Decoding, Encoding, and Modality Conversion Matteo Ferrante, Tommaso Boccato, Grigorii Rashkov, Nicola Toschi Link This paper presents a novel approach towards creating a foundational model for aligning neural data and visual stimuli across multimodal representationsof brain activity by leveraging contrastive learning. We used electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging (fMRI) data. Our framework's capabilities are demonstrated through three key experiments: decoding visual information from neural data, encoding images into neural representations, and converting between neural modalities. The results highlight the model's ability to accurately capture semantic information across different brain imaging techniques, illustrating its potential in decoding, encoding, and modality conversion tasks.
2024-11-12 Search for the X17 particle in $^{7}\mathrm{Li}(\mathrm{p},\mathrm{e}^+ \mathrm{e}^{-}) ^{8}\mathrm{Be}$ processes with the MEG II detector The MEG II collaboration, K. Afanaciev, A. M. Baldini, S. Ban, H. Benmansour, G. Boca, P. W. Cattaneo, G. Cavoto, F. Cei, M. Chiappini, A. Corvaglia, G. Dal Maso, A. De Bari, M. De Gerone, L. Ferrari Barusso, M. Francesconi, L. Galli, G. Gallucci, F. Gatti, L. Gerritzen, F. Grancagnolo, E. G. Grandoni, M. Grassi, D. N. Grigoriev, M. Hildebrandt, F. Ignatov, F. Ikeda, T. Iwamoto, S. Karpov, P. -R. Kettle, N. Khomutov, A. Kolesnikov, N. Kravchuk, V. Krylov, N. Kuchinskiy, F. Leonetti, W. Li, V. Malyshev, A. Matsushita, M. Meucci, S. Mihara, W. Molzon, T. Mori, D. Nicolò, H. Nishiguchi, A. Ochi, W. Ootani, A. Oya, D. Palo, M. Panareo, A. Papa, V. Pettinacci, A. Popov, F. Renga, S. Ritt, M. Rossella, A. Rozhdestvensky. S. Scarpellini, P. Schwendimann, G. Signorelli, M. Takahashi, Y. Uchiyama, A. Venturini, B. Vitali, C. Voena, K. Yamamoto, R. Yokota, T. Yonemoto Link The observation of a resonance structure in the opening angle of the electron-positron pairs in the $^{7}$Li(p,\ee) $^{8}$Be reaction was claimed and interpreted as the production and subsequent decay of a hypothetical particle (X17). Similar excesses, consistent with this particle, were later observed in processes involving $^{4}$He and $^{12}$C nuclei with the same experimental technique. The MEG II apparatus at PSI, designed to search for the $\mu^+ \rightarrow \mathrm{e}^+ \gamma$ decay, can be exploited to investigate the existence of this particle and study its nature. Protons from a Cockroft-Walton accelerator, with an energy up to 1.1 MeV, were delivered on a dedicated Li-based target. The $\gamma$ and the e$^{+}$e$^{-}$ pair emerging from the $^8\mathrm{Be}^*$ transitions were studied with calorimeters and a spectrometer, featuring a broader angular acceptance than previous experiments. We present in this paper the analysis of a four-week data-taking in 2023 with a beam energy of 1080 keV, resulting in the excitation of two different resonances with Q-value \SI{17.6}{\mega\electronvolt} and \SI{18.1}{\mega\electronvolt}. No significant signal was found, and limits at \SI{90}{\percent} C.L. on the branching ratios (relative to the $\gamma$ emission) of the two resonances to X17 were set, $R_{17.6} < 1.8 \times 10^{-6} $ and $R_{18.1} &lt; 1.2 \times 10^{-5} $.
2024-11-07 MEG: Medical Knowledge-Augmented Large Language Models for Question Answering Laura Cabello, Carmen Martin-Turrero, Uchenna Akujuobi, Anders Søgaard, Carlos Bobed Link Question answering is a natural language understanding task that involves reasoning over both explicit context and unstated, relevant domain knowledge. Large language models (LLMs), which underpin most contemporary question answering systems, struggle to induce how concepts relate in specialized domains such as medicine. Existing medical LLMs are also costly to train. In this work, we present MEG, a parameter-efficient approach for medical knowledge-augmented LLMs. MEG uses a lightweight mapping network to integrate graph embeddings into the LLM, enabling it to leverage external knowledge in a cost-effective way. We evaluate our method on four popular medical multiple-choice datasets and show that LLMs greatly benefit from the factual grounding provided by knowledge graph embeddings. MEG attains an average of +10.2% accuracy over the Mistral-Instruct baseline, and +6.7% over specialized models like BioMistral. We also show results based on Llama-3. Finally, we show that MEG's performance remains robust to the choice of graph encoder.

neuroAI

Publish Date Title Authors URL Abstract
2024-11-27 NeuroAI for AI Safety Patrick Mineault, Niccolò Zanichelli, Joanne Zichen Peng, Anton Arkhipov, Eli Bingham, Julian Jara-Ettinger, Emily Mackevicius, Adam Marblestone, Marcelo Mattar, Andrew Payne, Sophia Sanborn, Karen Schroeder, Zenna Tavares, Andreas Tolias Link As AI systems become increasingly powerful, the need for safe AI has become more pressing. Humans are an attractive model for AI safety: as the only known agents capable of general intelligence, they perform robustly even under conditions that deviate significantly from prior experiences, explore the world safely, understand pragmatics, and can cooperate to meet their intrinsic goals. Intelligence, when coupled with cooperation and safety mechanisms, can drive sustained progress and well-being. These properties are a function of the architecture of the brain and the learning algorithms it implements. Neuroscience may thus hold important keys to technical AI safety that are currently underexplored and underutilized. In this roadmap, we highlight and critically evaluate several paths toward AI safety inspired by neuroscience: emulating the brain's representations, information processing, and architecture; building robust sensory and motor systems from imitating brain data and bodies; fine-tuning AI systems on brain data; advancing interpretability using neuroscience methods; and scaling up cognitively-inspired architectures. We make several concrete recommendations for how neuroscience can positively impact AI safety.
2024-11-21 Evaluating Representational Similarity Measures from the Lens of Functional Correspondence Yiqing Bo, Ansh Soni, Sudhanshu Srivastava, Meenakshi Khosla Link Neuroscience and artificial intelligence (AI) both face the challenge of interpreting high-dimensional neural data, where the comparative analysis of such data is crucial for revealing shared mechanisms and differences between these complex systems. Despite the widespread use of representational comparisons and the abundance classes of comparison methods, a critical question remains: which metrics are most suitable for these comparisons? While some studies evaluate metrics based on their ability to differentiate models of different origins or constructions (e.g., various architectures), another approach is to assess how well they distinguish models that exhibit distinct behaviors. To investigate this, we examine the degree of alignment between various representational similarity measures and behavioral outcomes, employing group statistics and a comprehensive suite of behavioral metrics for comparison. In our evaluation of eight commonly used representational similarity metrics in the visual domain -- spanning alignment-based, Canonical Correlation Analysis (CCA)-based, inner product kernel-based, and nearest-neighbor methods -- we found that metrics like linear Centered Kernel Alignment (CKA) and Procrustes distance, which emphasize the overall geometric structure or shape of representations, excelled in differentiating trained from untrained models and aligning with behavioral measures, whereas metrics such as linear predictivity, commonly used in neuroscience, demonstrated only moderate alignment with behavior. These insights are crucial for selecting metrics that emphasize behaviorally meaningful comparisons in NeuroAI research.
2024-10-25 A prescriptive theory for brain-like inference Hadi Vafaii, Dekel Galor, Jacob L. Yates Link The Evidence Lower Bound (ELBO) is a widely used objective for training deep generative models, such as Variational Autoencoders (VAEs). In the neuroscience literature, an identical objective is known as the variational free energy, hinting at a potential unified framework for brain function and machine learning. Despite its utility in interpreting generative models, including diffusion models, ELBO maximization is often seen as too broad to offer prescriptive guidance for specific architectures in neuroscience or machine learning. In this work, we show that maximizing ELBO under Poisson assumptions for general sequence data leads to a spiking neural network that performs Bayesian posterior inference through its membrane potential dynamics. The resulting model, the iterative Poisson VAE (iP-VAE), has a closer connection to biological neurons than previous brain-inspired predictive coding models based on Gaussian assumptions. Compared to amortized and iterative VAEs, iP-VAElearns sparser representations and exhibits superior generalization to out-of-distribution samples. These findings suggest that optimizing ELBO, combined with Poisson assumptions, provides a solid foundation for developing prescriptive theories in NeuroAI.
2024-09-09 Evidence from fMRI Supports a Two-Phase Abstraction Process in Language Models Emily Cheng, Richard J. Antonello Link Research has repeatedly demonstrated that intermediate hidden states extracted from large language models are able to predict measured brain response to natural language stimuli. Yet, very little is known about the representation properties that enable this high prediction performance. Why is it the intermediate layers, and not the output layers, that are most capable for this unique and highly general transfer task? In this work, we show that evidence from language encoding models in fMRI supports the existence of a two-phase abstraction process within LLMs. We use manifold learning methods to show that this abstraction process naturally arises over the course of training a language model and that the first "composition" phase of this abstraction process is compressed into fewer layers as training continues. Finally, we demonstrate a strong correspondence between layerwise encoding performance and the intrinsic dimensionality of representations from LLMs. We give initial evidence that this correspondence primarily derives from the inherent compositionality of LLMs and not their next-word prediction properties.
2024-07-22 Predictive Coding Networks and Inference Learning: Tutorial and Survey Björn van Zwol, Ro Jefferson, Egon L. van den Broek Link Recent years have witnessed a growing call for renewed emphasis on neuroscience-inspired approaches in artificial intelligence research, under the banner of NeuroAI. A prime example of this is predictive coding networks (PCNs), based on the neuroscientific framework of predictive coding. This framework views the brain as a hierarchical Bayesian inference model that minimizes prediction errors through feedback connections. Unlike traditional neural networks trained with backpropagation (BP), PCNs utilize inference learning (IL), a more biologically plausible algorithm that explains patterns of neural activity that BP cannot. Historically, IL has been more computationally intensive, but recent advancements have demonstrated that it can achieve higher efficiency than BP with sufficient parallelization. Furthermore, PCNs can be mathematically considered a superset of traditional feedforward neural networks (FNNs), significantly extending the range of trainable architectures. As inherently probabilistic (graphical) latent variable models, PCNs provide a versatile framework for both supervised learning and unsupervised (generative) modeling that goes beyond traditional artificial neural networks. This work provides a comprehensive review and detailed formal specification of PCNs, particularly situating them within the context of modern ML methods. Additionally, we introduce a Python library (PRECO) for practical implementation. This positions PC as a promising framework for future ML innovations.
2023-10-29 Beyond Geometry: Comparing the Temporal Structure of Computation in Neural Circuits with Dynamical Similarity Analysis Mitchell Ostrow, Adam Eisen, Leo Kozachkov, Ila Fiete Link How can we tell whether two neural networks utilize the same internal processes for a particular computation? This question is pertinent for multiple subfields of neuroscience and machine learning, including neuroAI, mechanistic interpretability, and brain-machine interfaces. Standard approaches for comparing neural networks focus on the spatial geometry of latent states. Yet in recurrent networks, computations are implemented at the level of dynamics, and two networks performing the same computation with equivalent dynamics need not exhibit the same geometry. To bridge this gap, we introduce a novel similarity metric that compares two systems at the level of their dynamics, called Dynamical Similarity Analysis (DSA). Our method incorporates two components: Using recent advances in data-driven dynamical systems theory, we learn a high-dimensional linear system that accurately captures core features of the original nonlinear dynamics. Next, we compare different systems passed through this embedding using a novel extension of Procrustes Analysis that accounts for how vector fields change under orthogonal transformation. In four case studies, we demonstrate that our method disentangles conjugate and non-conjugate recurrent neural networks (RNNs), while geometric methods fall short. We additionally show that our method can distinguish learning rules in an unsupervised manner. Our method opens the door to comparative analyses of the essential temporal structure of computation in neural circuits.
2023-05-25 Explaining V1 Properties with a Biologically Constrained Deep Learning Architecture Galen Pogoncheff, Jacob Granley, Michael Beyeler Link Convolutional neural networks (CNNs) have recently emerged as promising models of the ventral visual stream, despite their lack of biological specificity. While current state-of-the-art models of the primary visual cortex (V1) have surfaced from training with adversarial examples and extensively augmented data, these models are still unable to explain key neural properties observed in V1 that arise from biological circuitry. To address this gap, we systematically incorporated neuroscience-derived architectural components into CNNs to identify a set of mechanisms and architectures that comprehensively explain neural activity in V1. We show drastic improvements in model-V1 alignment driven by the integration of architectural components that simulate center-surround antagonism, local receptive fields, tuned normalization, and cortical magnification. Upon enhancing task-driven CNNs with a collection of these specialized components, we uncover models with latent representations that yield state-of-the-art explanation of V1 neural activity and tuning properties. Our results highlight an important advancement in the field of NeuroAI, as we systematically establish a set of architectural components that contribute to unprecedented explanation of V1. The neuroscience insights that could be gleaned from increasingly accurate in-silico models of the brain have the potential to greatly advance the fields of both neuroscience and artificial intelligence.
2024-11-09 A Deep Probabilistic Spatiotemporal Framework for Dynamic Graph Representation Learning with Application to Brain Disorder Identification Sin-Yee Yap, Junn Yong Loo, Chee-Ming Ting, Fuad Noman, Raphael C. -W. Phan, Adeel Razi, David L. Dowe Link Recent applications of pattern recognition techniques on brain connectome classification using functional connectivity (FC) are shifting towards acknowledging the non-Euclidean topology and dynamic aspects of brain connectivity across time. In this paper, a deep spatiotemporal variational Bayes (DSVB) framework is proposed to learn time-varying topological structures in dynamic FC networks for identifying autism spectrum disorder (ASD) in human participants. The framework incorporates a spatial-aware recurrent neural network with an attention-based message passing scheme to capture rich spatiotemporal patterns across dynamic FC networks. To overcome model overfitting on limited training datasets, an adversarial training strategy is introduced to learn graph embedding models that generalize well to unseen brain networks. Evaluation on the ABIDE resting-state functional magnetic resonance imaging dataset shows that our proposed framework substantially outperforms state-of-the-art methods in identifying patients with ASD. Dynamic FC analyses with DSVB-learned embeddings reveal apparent group differences between ASD and healthy controls in brain network connectivity patterns and switching dynamics of brain states. The code is available at https://github.com/Monash-NeuroAI/Deep-Spatiotemporal-Variational-Bayes.
2023-03-11 Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural Networks Feng-Lei Fan, Yingxin Li, Hanchuan Peng, Tieyong Zeng, Fei Wang Link Throughout history, the development of artificial intelligence, particularly artificial neural networks, has been open to and constantly inspired by the increasingly deepened understanding of the brain, such as the inspiration of neocognitron, which is the pioneering work of convolutional neural networks. Per the motives of the emerging field: NeuroAI, a great amount of neuroscience knowledge can help catalyze the next generation of AI by endowing a network with more powerful capabilities. As we know, the human brain has numerous morphologically and functionally different neurons, while artificial neural networks are almost exclusively built on a single neuron type. In the human brain, neuronal diversity is an enabling factor for all kinds of biological intelligent behaviors. Since an artificial network is a miniature of the human brain, introducing neuronal diversity should be valuable in terms of addressing those essential problems of artificial networks such as efficiency, interpretability, and memory. In this Primer, we first discuss the preliminaries of biological neuronal diversity and the characteristics of information transmission and processing in a biological neuron. Then, we review studies of designing new neurons for artificial networks. Next, we discuss what gains can neuronal diversity bring into artificial networks and exemplary applications in several important fields. Lastly, we discuss the challenges and future directions of neuronal diversity to explore the potential of NeuroAI.
2022-12-08 A Rubric for Human-like Agents and NeuroAI Ida Momennejad Link Researchers across cognitive, neuro-, and computer sciences increasingly reference human-like artificial intelligence and neuroAI. However, the scope and use of the terms are often inconsistent. Contributed research ranges widely from mimicking behaviour, to testing machine learning methods as neurally plausible hypotheses at the cellular or functional levels, or solving engineering problems. However, it cannot be assumed nor expected that progress on one of these three goals will automatically translate to progress in others. Here a simple rubric is proposed to clarify the scope of individual contributions, grounded in their commitments to human-like behaviour, neural plausibility, or benchmark/engineering goals. This is clarified using examples of weak and strong neuroAI and human-like agents, and discussing the generative, corroborate, and corrective ways in which the three dimensions interact with one another. The author maintains that future progress in artificial intelligence will need strong interactions across the disciplines, with iterative feedback loops and meticulous validity tests, leading to both known and yet-unknown advances that may span decades to come.

medical

Publish Date Title Authors URL Abstract
2024-12-30 Unified dimensionality reduction techniques in chronic liver disease detection Anand Karna, Naina Khan, Rahul Rauniyar, Prashant Giridhar Shambharkar Link Globally, chronic liver disease continues to be a major health concern that requires precise predictive models for prompt detection and treatment. Using the Indian Liver Patient Dataset (ILPD) from the University of California at Irvine's UCI Machine Learning Repository, a number of machine learning algorithms are investigated in this study. The main focus of our research is this dataset, which includes the medical records of 583 patients, 416 of whom have been diagnosed with liver disease and 167 of whom have not. There are several aspects to this work, including feature extraction and dimensionality reduction methods like Linear Discriminant Analysis (LDA), Factor Analysis (FA), t-distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP). The purpose of the study is to investigate how well these approaches work for converting high-dimensional datasets and improving prediction accuracy. To assess the prediction ability of the improved models, a number of classification methods were used, such as Multi-layer Perceptron, Random Forest, K-nearest neighbours, and Logistic Regression. Remarkably, the improved models performed admirably, with Random Forest having the highest accuracy of 98.31\% in 10-fold cross-validation and 95.79\% in train-test split evaluation. Findings offer important new perspectives on the choice and use of customized feature extraction and dimensionality reduction methods, which improve predictive models for patients with chronic liver disease.
2024-12-30 Superfluorescent scintillation from coupled perovskite quantum dots Shaul Katznelson, Shai Levy, Alexey Gorlach, Nathan Regev, Michael Birk, Chen Mechel, Offek Tziperman, Roman Schuetz, Rotem Strassberg, Georgy Dosovitsky, Charles Roques-Carmes, Yehonadav Bekenstein, Ido Kaminer Link Scintillation, the process of converting high-energy radiation to detectable visible light, is pivotal in advanced technologies spanning from medical diagnostics to fundamental scientific research. Despite significant advancements toward faster and more efficient scintillators, there remains a fundamental limit arising from the intrinsic properties of scintillating materials. The scintillation process culminates in spontaneous emission of visible light, which is restricted in rate by the oscillator strength of individual emission centers. Here, we observe a novel collective emission phenomenon under X-ray excitation, breaking this limit and accelerating the emission. Our observation reveals that strong interactions between simultaneously excited coupled perovskite quantum dots can create collective radioluminescence. This effect is characterized by a spectral shift and an enhanced rate of emission, with an average lifetime of 230 ps, 14 times faster than their room temperature spontaneous emission. It has been established that such quantum dots exhibit superfluorescence under UV excitation. However, X-ray superfluorescence is inherently different, as each high-energy photon creates multiple synchronized excitation events, triggered by a photoelectron and resulting in even faster emission rates, a larger spectral shift, and a broader spectrum. This observation is consistent with a quantum-optical analysis explaining both the UV-driven and X-ray-driven effects. We use a Hanbury-Brown-Twiss g^(2) ({\tau}) setup to analyze the temperature-dependent temporal response of these scintillators. Collective radioluminescence breaks the limit of scintillation lifetime based on spontaneous emission and could dramatically improve time-of-flight detector performance, introducing quantum enhancements to scintillation science.
2024-12-30 A flexible parametric approach to synthetic patients generation using health data Marta Cipriani, Lorenzo Di Rocco, Maria Puopolo, Marco Alfò Link Enhancing reproducibility and data accessibility is essential to scientific research. However, ensuring data privacy while achieving these goals is challenging, especially in the medical field, where sensitive data are often commonplace. One possible solution is to use synthetic data that mimic real-world datasets. This approach may help to streamline therapy evaluation and enable quicker access to innovative treatments. We propose using a method based on sequential conditional regressions, such as in a fully conditional specification (FCS) approach, along with flexible parametric survival models to accurately replicate covariate patterns and survival times. To make our approach available to a wide audience of users, we have developed user-friendly functions in R and Python to implement it. We also provide an example application to registry data on patients affected by Creutzfeld-Jacob disease. The results show the potentialities of the proposed method in mirroring observed multivariate distributions and survival outcomes.
2024-12-30 HisynSeg: Weakly-Supervised Histopathological Image Segmentation via Image-Mixing Synthesis and Consistency Regularization Zijie Fang, Yifeng Wang, Peizhang Xie, Zhi Wang, Yongbing Zhang Link Tissue semantic segmentation is one of the key tasks in computational pathology. To avoid the expensive and laborious acquisition of pixel-level annotations, a wide range of studies attempt to adopt the class activation map (CAM), a weakly-supervised learning scheme, to achieve pixel-level tissue segmentation. However, CAM-based methods are prone to suffer from under-activation and over-activation issues, leading to poor segmentation performance. To address this problem, we propose a novel weakly-supervised semantic segmentation framework for histopathological images based on image-mixing synthesis and consistency regularization, dubbed HisynSeg. Specifically, synthesized histopathological images with pixel-level masks are generated for fully-supervised model training, where two synthesis strategies are proposed based on Mosaic transformation and B\'ezier mask generation. Besides, an image filtering module is developed to guarantee the authenticity of the synthesized images. In order to further avoid the model overfitting to the occasional synthesis artifacts, we additionally propose a novel self-supervised consistency regularization, which enables the real images without segmentation masks to supervise the training of the segmentation model. By integrating the proposed techniques, the HisynSeg framework successfully transforms the weakly-supervised semantic segmentation problem into a fully-supervised one, greatly improving the segmentation accuracy. Experimental results on three datasets prove that the proposed method achieves a state-of-the-art performance. Code is available at https://github.com/Vison307/HisynSeg.
2024-12-30 Acquisition-Independent Deep Learning for Quantitative MRI Parameter Estimation using Neural Controlled Differential Equations Daan Kuppens, Sebastiano Barbieri, Daisy van den Berg, Pepijn Schouten, Harriet C. Thoeny, Myrte Wennen, Oliver J. Gurney-Champion Link Deep learning has proven to be a suitable alternative to least-squares (LSQ) fitting for parameter estimation in various quantitative MRI (QMRI) models. However, current deep learning implementations are not robust to changes in MR acquisition protocols. In practice, QMRI acquisition protocols differ substantially between different studies and clinical settings. The lack of generalizability and adoptability of current deep learning approaches for QMRI parameter estimation impedes the implementation of these algorithms in clinical trials and clinical practice. Neural Controlled Differential Equations (NCDEs) allow for the sampling of incomplete and irregularly sampled data with variable length, making them ideal for use in QMRI parameter estimation. In this study, we show that NCDEs can function as a generic tool for the accurate prediction of QMRI parameters, regardless of QMRI sequence length, configuration of independent variables and QMRI forward model (variable flip angle T1-mapping, intravoxel incoherent motion MRI, dynamic contrast-enhanced MRI). NCDEs achieved lower mean squared error than LSQ fitting in low-SNR simulations and in vivo in challenging anatomical regions like the abdomen and leg, but this improvement was no longer evident at high SNR. NCDEs reduce estimation error interquartile range without increasing bias, particularly under conditions of high uncertainty. These findings suggest that NCDEs offer a robust approach for reliable QMRI parameter estimation, especially in scenarios with high uncertainty or low image quality. We believe that with NCDEs, we have solved one of the main challenges for using deep learning for QMRI parameter estimation in a broader clinical and research setting.
2024-12-30 Identifying average causal effect in regression discontinuity design with auxiliary data Xinqin Feng, Wenjie Hu, Pu Yang, Tingyu Li, Xiao-Hua Zhou Link Regression discontinuity designs are widely used when treatment assignment is determined by whether a running variable exceeds a predefined threshold. However, most research focuses on estimating local causal effects at the threshold, leaving the challenge of identifying treatment effects away from the cutoff largely unaddressed. The primary difficulty in this context is that the counterfactual outcome under the alternative treatment status is unobservable.In this paper, we introduce a novel framework for identifying the global average causal effect in regression discontinuity designs.Our approach integrates a latent variable and an additional data structure alongside the traditional regression discontinuity design setup. This enhanced framework allows us to extend the analysis beyond the threshold, providing a more comprehensive understanding of treatment effects.We develop asymptotically valid estimation and inference procedures under this framework, ensuring the robustness of our findings. To demonstrate the practical application of our method, we assess the causal effects of vitamin A supplementation on the severity of autism spectrum disorders in children.Our approach offers a significant advancement in the analysis of regression discontinuity designs, enabling researchers to estimate causal effects across a broader range of values and providing more actionable insights in policy and medical research.
2024-12-30 Residual Connection Networks in Medical Image Processing: Exploration of ResUnet++ Model Driven by Human Computer Interaction Peixin Dai, Jingsi Zhang, Zhitao Shu Link Accurate identification and localisation of brain tumours from medical images remain challenging due to tumour variability and structural complexity. Convolutional Neural Networks (CNNs), particularly ResNet and Unet, have made significant progress in medical image processing, offering robust capabilities for image segmentation. However, limited research has explored their integration with human-computer interaction (HCI) to enhance usability, interpretability, and clinical applicability. This paper introduces ResUnet++, an advanced hybrid model combining ResNet and Unet++, designed to improve tumour detection and localisation while fostering seamless interaction between clinicians and medical imaging systems. ResUnet++ integrates residual blocks in both the downsampling and upsampling phases, ensuring critical image features are preserved. By incorporating HCI principles, the model provides intuitive, real-time feedback, enabling clinicians to visualise and interact with tumour localisation results effectively. This fosters informed decision-making and supports workflow efficiency in clinical settings. We evaluated ResUnet++ on the LGG Segmentation Dataset, achieving a Jaccard Loss of 98.17%. The results demonstrate its strong segmentation performance and potential for real-world applications. By bridging advanced medical imaging techniques with HCI, ResUnet++ offers a foundation for developing interactive diagnostic tools, improving clinician trust, decision accuracy, and patient outcomes, and advancing the integration of AI in healthcare workflows.
2024-12-30 Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis Yousef Yeganeh, Ioannis Charisiadis, Marta Hasny, Martin Hartenberger, Björn Ommer, Nassir Navab, Azade Farshad, Ehsan Adeli Link Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models; however, such large datasets are not always accessible in medical imaging due to cost and privacy issues, which contradicts one of the main applications of such models to produce synthetic samples where real data is scarce. Also, finetuning on pre-trained general models has been a challenge due to the distribution shift between the medical domain and the pre-trained models. Here, we propose Latent Drift (LD) for diffusion models that can be adopted for any fine-tuning method to mitigate the issues faced by the distribution shift or employed in inference time as a condition. Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation, which is crucial to investigate how parameters such as gender, age, and adding or removing diseases in a patient would alter the medical images. We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation. Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes. The source code of this work will be publicly released upon its acceptance.
2024-12-30 A wireless bilateral transceiver coil based on volume decoupled resonators for a clinical MR mammography Pavel M. Tikhonov, Alexander D. Fedotov, Georgiy A. Solomakha, Anna A. Hurshkainen Link Wireless radio frequency coils provide a promising solution for clinical MR applications due to several benefits, such as cable-free connection and compatibility with MR platforms of different vendors. Namely, for the purpose of clinical high-field human breast imaging several wireless transceiver coils are known to the date, those operational principle is based on inductive coupling with a body coil. These coils are commonly consist of a several volume resonators to perform bilateral breast imaging. Due to the electrically close location of volume resonators, strong inductive coupling is observed, resulting in the occurrence of hybrid modes. In principle, MR imaging using one of the hybrid modes is possible provided by the homogeneity of a B+ distribution. However, the question of influence of volume resonators coupling on wireless coil transmit efficiency and receive sensitivity was not previously studied. By this work, we performed study to understand this issue. The first wireless coil with decoupled resonators is developed, evaluated numerically and experimentally including in vivo study on healthy volunteers. According to the obtained results, transmit efficiency and receive sensitivity of a pair of decoupled Helmholtz resonators is at least 24% higher than for a pair of coupled resonators.
2024-12-29 HALLUCINOGEN: A Benchmark for Evaluating Object Hallucination in Large Visual-Language Models Ashish Seth, Dinesh Manocha, Chirag Agarwal Link Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in performing complex multimodal tasks. However, they are still plagued by object hallucination: the misidentification or misclassification of objects present in images. To this end, we propose HALLUCINOGEN, a novel visual question answering (VQA) object hallucination attack benchmark that utilizes diverse contextual reasoning prompts to evaluate object hallucination in state-of-the-art LVLMs. We design a series of contextual reasoning hallucination prompts to evaluate LVLMs' ability to accurately identify objects in a target image while asking them to perform diverse visual-language tasks such as identifying, locating or performing visual reasoning around specific objects. Further, we extend our benchmark to high-stakes medical applications and introduce MED-HALLUCINOGEN, hallucination attacks tailored to the biomedical domain, and evaluate the hallucination performance of LVLMs on medical images, a critical area where precision is crucial. Finally, we conduct extensive evaluations of eight LVLMs and two hallucination mitigation strategies across multiple datasets to show that current generic and medical LVLMs remain susceptible to hallucination attacks.

About

Daily arxiv updates on NeuroAI related topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages