Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[v23.2.x] rptest: Test spillover and timequeries #13036

Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 33 additions & 11 deletions tests/rptest/tests/timequery_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
wait_for_local_storage_truncate)

from rptest.services.kgo_verifier_services import KgoVerifierProducer
from rptest.utils.si_utils import BucketView

from ducktape.mark import parametrize

Expand Down Expand Up @@ -272,7 +273,8 @@ def setUp(self):
# test parameter to set cluster configs before starting.
pass

def set_up_cluster(self, cloud_storage: bool, batch_cache: bool):
def set_up_cluster(self, cloud_storage: bool, batch_cache: bool,
spillover: bool):
self.redpanda.set_extra_rp_conf({
# Testing with batch cache disabled is important, because otherwise
# we won't touch the path in skipping_consumer that applies
Expand Down Expand Up @@ -301,29 +303,47 @@ def set_up_cluster(self, cloud_storage: bool, batch_cache: bool):
cloud_storage_enable_remote_read=True,
cloud_storage_enable_remote_write=True,
)
if spillover:
# Enable spillover with a low limit so that we can test
# timequery fetching from spillover manifest.
si_settings.cloud_storage_spillover_manifest_max_segments = 2
si_settings.cloud_storage_housekeeping_interval_ms = 1000
self.redpanda.set_si_settings(si_settings)
else:
self.redpanda.add_extra_rp_conf(
{'log_segment_size': self.log_segment_size})

self.redpanda.start()

def _do_test_timequery(self, cloud_storage: bool, batch_cache: bool):
self.set_up_cluster(cloud_storage, batch_cache)
def _do_test_timequery(self, cloud_storage: bool, batch_cache: bool,
spillover: bool):
self.set_up_cluster(cloud_storage, batch_cache, spillover)
self._test_timequery(cluster=self.redpanda,
cloud_storage=cloud_storage,
batch_cache=batch_cache)
if spillover:
# Check that we are actually using the spillover manifest
bucket = BucketView(self.redpanda)
manifest = bucket.manifest_for_ntp("tqtopic", 0)
assert manifest["archive_start_offset"] == 0
assert manifest["start_offset"] > 0

@cluster(num_nodes=4)
@parametrize(cloud_storage=True, batch_cache=False)
@parametrize(cloud_storage=False, batch_cache=True)
@parametrize(cloud_storage=False, batch_cache=False)
def test_timequery(self, cloud_storage: bool, batch_cache: bool):
self._do_test_timequery(cloud_storage, batch_cache)
@parametrize(cloud_storage=True, batch_cache=False, spillover=False)
@parametrize(cloud_storage=True, batch_cache=False, spillover=True)
@parametrize(cloud_storage=False, batch_cache=True, spillover=False)
@parametrize(cloud_storage=False, batch_cache=False, spillover=False)
def test_timequery(self, cloud_storage: bool, batch_cache: bool,
spillover: bool):
self._do_test_timequery(cloud_storage, batch_cache, spillover)

@cluster(num_nodes=4)
def test_timequery_below_start_offset(self):
self.set_up_cluster(cloud_storage=False, batch_cache=False)
@parametrize(spillover=False)
@parametrize(spillover=True)
def test_timequery_below_start_offset(self, spillover: bool):
self.set_up_cluster(cloud_storage=False,
batch_cache=False,
spillover=spillover)
self._test_timequery_below_start_offset(cluster=self.redpanda)

@cluster(num_nodes=4)
Expand All @@ -332,7 +352,9 @@ def test_timequery_with_local_gc(self):
# likely to race timequeries with GC.
self.log_segment_size = int(self.log_segment_size / 32)
total_segments = 32 * 12
self.set_up_cluster(cloud_storage=True, batch_cache=False)
self.set_up_cluster(cloud_storage=True,
batch_cache=False,
spillover=False)
local_retention = self.log_segment_size * 4
record_size = 1024
base_ts = 1664453149000
Expand Down